Can Algebraic Circuit Lower Bounds Have Easy Proofs?

Prerona Chatterjee TIFR, Mumbai Mrinal Kumar IITB, Mumbai C. Ramya TIFR, Mumbai

Ramprasad Saptharishi TIFR, Mumbai Anamay Tengse TIFR, Mumbai

Algorithms & Complexity Seminar University of Waterloo

Part I

The Basics

Polynomials

Polynomials appear often in computation.
 e.g. Coding theory, complexity theory, combinatorics,...

Polynomials

- Polynomials appear often in computation.
 e.g. Coding theory, complexity theory, combinatorics,...
- ▶ Natural to wonder about the cost of computing polynomials

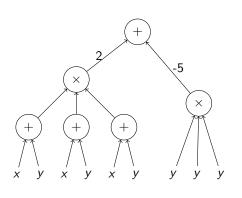
Polynomials

- Polynomials appear often in computation.
 e.g. Coding theory, complexity theory, combinatorics,...
- ▶ Natural to wonder about the cost of computing polynomials
- Variables $\bar{x} = \{x_1, \dots, x_n\}$, constants $\mathbb{F} = \mathbb{C}$ Operations - Addition + and multiplication \times .

$$f(x, y, z) = 2x^3 + 6x^2y + 6xy^2 - 3y^3 \in \mathbb{Q}[x, y, z]$$

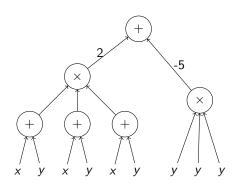
$$f(x, y, z) = 2x^3 + 6x^2y + 6xy^2 - 3y^3 \in \mathbb{Q}[x, y, z]$$

= 2(x + y)^3 - 5y^3



$$f(x, y, z) = 2x^3 + 6x^2y + 6xy^2 - 3y^3 \in \mathbb{Q}[x, y, z]$$

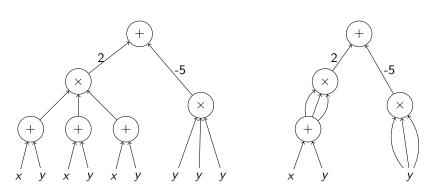
= 2(x + y)^3 - 5y^3



Algebraic Formulas

$$f(x, y, z) = 2x^3 + 6x^2y + 6xy^2 - 3y^3 \in \mathbb{Q}[x, y, z]$$

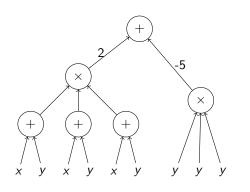
= 2(x + y)^3 - 5y^3



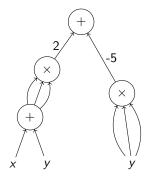
Algebraic Formulas

$$f(x, y, z) = 2x^3 + 6x^2y + 6xy^2 - 3y^3 \in \mathbb{Q}[x, y, z]$$

= 2(x + y)^3 - 5y^3

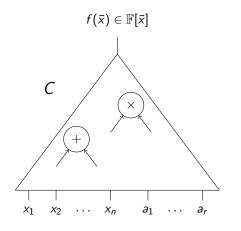


Algebraic Formulas



Algebraic Circuits

Algebraic Circuits



Parameters:

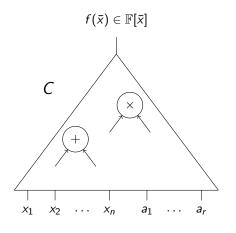
Size(C)

- No. of gates or no. of wires

 $\mathsf{Depth}(C)$

- Longest path from root to a leaf

Algebraic Circuits



Parameters:

Size(C)

- No. of gates or no. of wires

Depth(C)

 Longest path from root to a leaf

Q. Can we give tight bounds on size(f) for a certain f?

 $\operatorname{size}(f)$: Size of the smallest circuit computing $f(\bar{x})$.

Q. Can we find "explicit" polynomials that are "hard" to compute?

Q. Can we find "explicit" polynomials that are "hard" to compute?

Parameters: Number of variables - n, degree - d

This talk: $d \sim \text{poly}(n)$

Q. Can we find "explicit" polynomials that are "hard" to compute?

Parameters: Number of variables - n, degree - dThis talk: $d \sim \text{poly}(n)$

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n).

Q. Can we find "explicit" polynomials that are "hard" to compute?

Parameters: Number of variables - n, degree - dThis talk: $d \sim \text{poly}(n)$

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n).

Explicit: Reasonably easy to find coefficient of any monomial.

Q. Can we find "explicit" polynomials that are "hard" to compute?

Parameters: Number of variables - n, degree - dThis talk: $d \sim \text{poly}(n)$

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n).

Explicit: Reasonably easy to find coefficient of any monomial.

Definition (Criterion for VNP - Explicit Polynomials):

Suppose f is an n-variate, degree d = poly(n) polynomial whose coefficients are computable in #P/poly; then $f \in VNP$.

Q. Can we find "explicit" polynomials that are "hard" to compute?

Parameters: Number of variables - n, degree - d

This talk: $d \sim \text{poly}(n)$

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n).

Explicit: Reasonably easy to find coefficient of any monomial.

Definition (Criterion for VNP - Explicit Polynomials):

Suppose f is an n-variate, degree d = poly(n) polynomial whose coefficients are computable in #P/poly; then $f \in VNP$.

Q. VP vs VNP \approx Det_n vs Perm_n.

- Best Lower Bounds:
 - ightharpoonup Circuits: $\Theta(n \log d)$ for $x_1^d + \ldots + x_n^d$ [BS83,Smo97]
 - Formulas: $\Theta(n^2)$ for $\mathsf{ESym}(n, 0.1n)$ [CKSV20]

- Best Lower Bounds:
 - ightharpoonup Circuits: $\Theta(n \log d)$ for $x_1^d + \ldots + x_n^d$ [BS83,Smo97]
 - Formulas: $\Theta(n^2)$ for $\mathsf{ESym}(n, 0.1n)$ [CKSV20]
- Progress in Restricted Models:
 - ► Constant depth circuits [NW95,KST16,GKKS13,...]
 - ► Multilinear models [Raz09,DMPY12,...]
 - ► Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

- Best Lower Bounds:
 - ightharpoonup Circuits: $\Theta(n \log d)$ for $x_1^d + \ldots + x_n^d$ [BS83,Smo97]
 - Formulas: $\Theta(n^2)$ for $\mathsf{ESym}(n, 0.1n)$ [CKSV20]
- Progress in Restricted Models:
 - ► Constant depth circuits [NW95,KST16,GKKS13,...]
 - ► Multilinear models [Raz09,DMPY12,...]
 - ► Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

- Best Lower Bounds:
 - Circuits: $\Theta(n \log d)$ for $x_1^d + \ldots + x_n^d$ [BS83,Smo97]
 - Formulas: $\Theta(n^2)$ for $\mathsf{ESym}(n, 0.1n)$ [CKSV20]
- Progress in Restricted Models:
 - ► Constant depth circuits [NW95,KST16,GKKS13,...]
 - ► Multilinear models [Raz09,DMPY12,...]
 - ► Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Are current methods insufficient?

Part II

The Result

Toy Problem:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Toy Problem:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Finding explicit $h \notin C$:

Toy Problem:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Finding explicit $h \notin C$:

Weakness" of C:

If $f(t) = at^2 + bt + c \in C$, then $b^2 - 4ac = 0$.

Toy Problem: $C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$

Finding explicit $h \notin C$:

- \blacktriangleright "Weakness" of \mathcal{C} :
 - If $f(t) = at^2 + bt + c \in \mathcal{C}$, then $b^2 4ac = 0$.
- "Hard" Polynomial:

$$h(t) = a't^2 + b't + c'$$
 such that $b'^2 - 4a'c' \neq 0$.

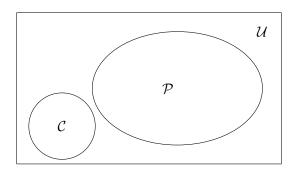
 \mathcal{U} - universe, \mathcal{C} - class, \mathcal{P} - property

$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$

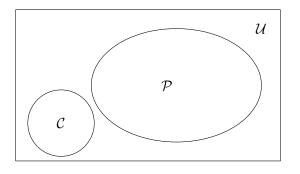
$$\mathcal{U}$$

$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$

$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$

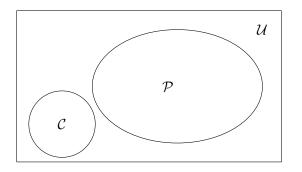


$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$



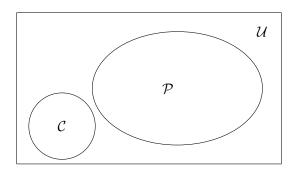
▶ **Useful** against $C : C \cap P = \emptyset$.

$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$



- ▶ **Useful** against $C : C \cap P = \emptyset$.
- **Constructive**: "Easy" to decide if $f \in \mathcal{P}$, for all f.

$$\mathcal{U}$$
 - universe, \mathcal{C} - class, \mathcal{P} - property $at^2 + bt + c$, $(\alpha t - \beta)^2$, $b^2 - 4ac \neq 0$

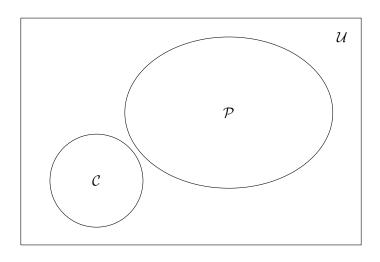


- ▶ **Useful** against $C : C \cap P = \emptyset$.
- **Constructive**: "Easy" to decide if $f \in \mathcal{P}$, for all f.
- ▶ Large: "Most" $f \in \mathcal{P}$.

Lower Bounds from Natural Properties

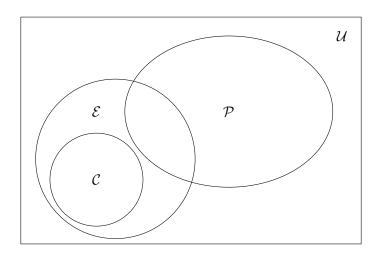
 ${\cal C}$ - class

 ${\mathcal P}$ - property



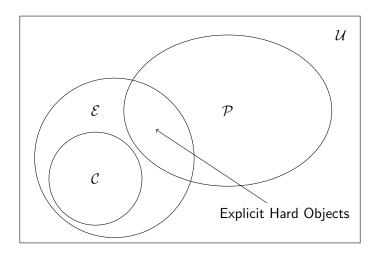
Lower Bounds from Natural Properties

 ${\mathcal C}$ - class ${\mathcal E}$ - explicit objects ${\mathcal P}$ - property



Lower Bounds from Natural Properties

 ${\mathcal C}$ - class ${\mathcal E}$ - explicit objects ${\mathcal P}$ - property



Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} .

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

Variables
$$\bar{x} = \{x_1, \dots, x_n\}$$
, Degree - d , Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d , $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,\ldots,x_n) = \sum_{m} f_m \cdot m \qquad f_m = \operatorname{coeff}_f(m)$$

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} .

 \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,...,x_n) = \sum_{m \in \mathcal{M}} f_m \cdot m$$
 $f_m = \operatorname{coeff}_f(m)$

Let $\operatorname{coeffs}(f) = [f_{m_1}, f_{m_2}, \dots, f_{m_N}] \in \mathbb{F}^N$.

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,...,x_n) = \sum_{m \in \mathcal{M}} f_m \cdot m$$
 $f_m = \text{coeff}_f(m)$

Let
$$\operatorname{coeffs}(f) = [f_{m_1}, f_{m_2}, \dots, f_{m_N}] \in \mathbb{F}^N$$
.

Definition (Defining Equation)

A polynomial P is said to be a defining equation for a class C, if P(coeffs(f)) = 0 for all $f \in C$.

Variables
$$\bar{x} = \{x_1, \dots, x_n\}$$
, Degree - d , Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d , $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,...,x_n) = \sum_{m \in \mathcal{M}} f_m \cdot m$$
 $f_m = \text{coeff}_f(m)$

Let
$$\operatorname{coeffs}(f) = [f_{m_1}, f_{m_2}, \dots, f_{m_N}] \in \mathbb{F}^N$$
.

Definition (Defining Equation)

A polynomial P is said to be a defining equation for a class C, if $P(\mathsf{coeffs}(f)) = 0$ for all $f \in C$.

$$\mathcal{U} = \mathbb{F}^N$$
 $\mathcal{C} = \mathsf{VP}(n, d)$ $P_N = \mathsf{defining} \; \mathsf{equation}$

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a natural proof against C_n if:

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a natural proof against C_n if:

▶ **Usefulness**: P(coeffs(f)) = 0 for all $f \in C_n$.

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1, \ldots, Z_N)$ is a natural proof against C_n if:

- ▶ **Usefulness**: P(coeffs(f)) = 0 for all $f \in C_n$.
- ► **Constructivity**: *P* is "easy" to compute.

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a natural proof against C_n if:

- ▶ **Usefulness**: P(coeffs(f)) = 0 for all $f \in C_n$.
- **Constructivity**: *P* is "easy" to compute.
- ▶ Largeness: $P(\text{coeffs}(g)) \neq 0$ for most g.

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a natural proof against C_n if:

- ▶ **Usefulness**: P(coeffs(f)) = 0 for all $f \in C_n$.
- **Constructivity**: *P* is "easy" to compute.
- ▶ Largeness: $P(\text{coeffs}(g)) \neq 0$ for most g.

Q. Are there natural proofs against VP_n ?

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a \mathcal{D}_N -natural proof against \mathcal{C}_n if:

- ▶ **Usefulness**: P(coeffs(f)) = 0 for all $f \in C_n$.
- **Constructivity**: $P \in \mathcal{D}_N$.
- ▶ **Largeness**: $P(\text{coeffs}(g)) \neq 0$ for most g.

Q. Are there natural proofs against VP_n ?

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1,...,Z_N)$ is a \mathcal{D}_N -natural proof against \mathcal{C}_n if:

- ▶ **Usefulness**: P is a defining equation for C_n .
- **Constructivity**: $P \in \mathcal{D}_N$.
- ▶ **Largeness**: $P(\text{coeffs}(g)) \neq 0$ for most g.

Q. Are there natural proofs against VP_n ?

For n, d and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

 $P(Z_1, \ldots, Z_N)$ is a \mathcal{D}_N -natural proof against C_n if:

- ▶ **Usefulness**: P is a defining equation for C_n .
- **Constructivity**: $P \in \mathcal{D}_N$.
- ▶ **Largeness**: $P(\text{coeffs}(g)) \neq 0$ for most g.

Q. Are there large VP_N -defining equations for VP_n ?

- ► Natural Proofs [FSV18]
 - Derandomization statement for C contradicts existence of natural proofs for C.

- ► Natural Proofs [FSV18]
 - Derandomization statement for C contradicts existence of natural proofs for C.
 - ▶ For several restricted classes C_n and D_N , there are no D_N -natural proofs against C_n .

- ► Natural Proofs [FSV18]
 - Derandomization statement for C contradicts existence of natural proofs for C.
 - ▶ For several restricted classes C_n and D_N , there are no D_N -natural proofs against C_n .
- ► Variety Membership [BIJL18,BIL+19]
 - Hardness of membership testing rules out efficient defining equations for certain classes.

► Natural Proofs [FSV18]

- Derandomization statement for C contradicts existence of natural proofs for C.
- For several restricted classes C_n and D_N , there are no D_N -natural proofs against C_n .

► Variety Membership [BIJL18,BIL+19]

Hardness of membership testing rules out efficient defining equations for certain classes.

► Rank Methods [EGOW18,GMOW19]

- ► Rank-based methods will not show optimal lower bounds.
- Tensor rank lower bounds do not lift to higher dimensions.

- ► Natural Proofs [FSV18]
 - Derandomization statement for C contradicts existence of natural proofs for C.
 - For several restricted classes C_n and D_N , there are no D_N -natural proofs against C_n .
- ► Variety Membership [BIJL18,BIL+19]
 - Hardness of membership testing rules out efficient defining equations for certain classes.
- ► Rank Methods [EGOW18,GMOW19]
 - Rank-based methods will not show optimal lower bounds.
 - Tensor rank lower bounds do not lift to higher dimensions.

Q. What about natural proofs for VP?

Q. Are there VP(N)-natural proofs against VP(n)?

Q. Are there VP(N)-natural proofs against VP(n)?

A. *Almost* yes, for *natural* polynomials.

Q. Are there VP(N)-natural proofs against VP(n)? **A.** Almost yes, for natural polynomials.

Theorem [CKRST20] (Defining Equations for $VP'_{\mathbb{C}}$):

For n,d and $N = \binom{n+d}{n}$,

There exists a nonzero $P(Z_1, ..., Z_N) \in VP(N)$ such that for all $f \in VP(n, d)$ with small integer coefficients, P(coeffs(f)) = 0.

Q. Are there VP(N)-natural proofs against VP(n)? **A.** Almost yes, for natural polynomials.

Theorem [CKRST20] (Defining Equations for $VP'_{\mathbb{C}}$):

For n,d and $N = \binom{n+d}{n}$,

There exists a nonzero $P(Z_1, ..., Z_N) \in VP(N)$ such that for all $f \in VP(n, d)$ with small integer coefficients, P(coeffs(f)) = 0.

Restriction not on circuits computing the polynomials.

Q. Are there VP(N)-natural proofs against VP(n)?

A. *Almost* yes, for *natural* polynomials.

Theorem [CKRST20] (Defining Equations for $VP'_{\mathbb{C}}$):

For n,d and $N = \binom{n+d}{n}$,

There exists a nonzero $P(Z_1, ..., Z_N) \in VP(N)$ such that for all $f \in VP(n, d)$ with small integer coefficients,

 $P(\operatorname{coeffs}(f)) = 0.$

Restriction not on circuits computing the polynomials.

P is nonzero on sizeable fraction of polynomials with small integer coefficients.

- **Q.** Are there VP(N)-natural proofs against VP(n)?
- **A.** *Almost* yes, for *natural* polynomials.

Theorem [CKRST20] (Defining Equations for $VP'_{\mathbb{C}}$):

For n,d and $N = \binom{n+d}{n}$,

There exists a nonzero $P(Z_1, ..., Z_N) \in VP(N)$ such that for all $f \in VP(n, d)$ with small integer coefficients,

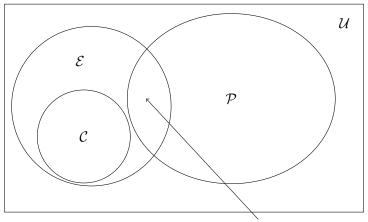
 $P(\operatorname{coeffs}(f)) = 0.$

Restriction not on circuits computing the polynomials.

P is nonzero on sizeable fraction of polynomials with small integer coefficients.

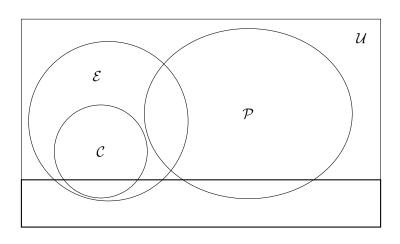
Q. How is this different from natural proofs?

 ${\mathcal C}$ - class, ${\mathcal P}$ - property, ${\mathcal E}$ - explicit polynomials

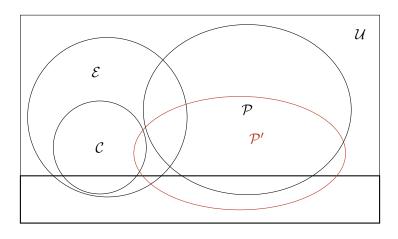


Explicit Hard Polynomials

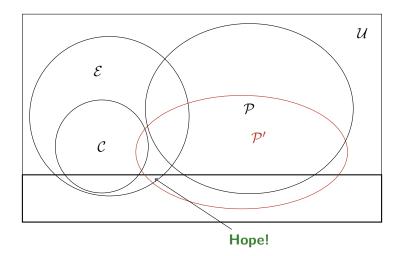
 ${\mathcal C}$ - class, ${\mathcal P}$ - property, ${\mathcal E}$ - explicit polynomials



 ${\mathcal C}$ - class, ${\mathcal P}$ - property, ${\mathcal E}$ - explicit polynomials ${\mathcal P}'$ - our property



 ${\mathcal C}$ - class, ${\mathcal P}$ - property, ${\mathcal E}$ - explicit polynomials ${\mathcal P}'$ - our property



Part III

Proofs and Discussion

Defining Property of VP

Defining Property of VP

Want: A property of VP that can be expressed succinctly.

Want: A property of VP that can be expressed succinctly.

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Want: A property of VP that can be expressed succinctly.

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Want: A property of VP that can be expressed succinctly.

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Hitting sets with small integers in the small coefficient setting.

Want: A property of VP that can be expressed succinctly.

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Hitting sets with small integers in the small coefficient setting.

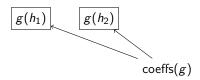
Idea: For a nonzero g, $g(\mathcal{H}) = 0$ is a proof that $g \notin \mathcal{C}$.

 $\mathcal{H} = \{h_1, \dots, h_r\}$ hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

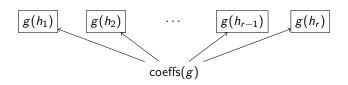
$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

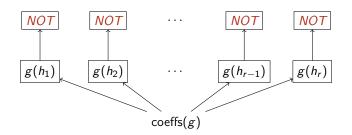
$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.



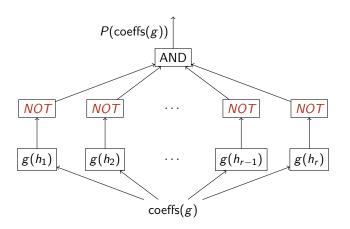
$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.



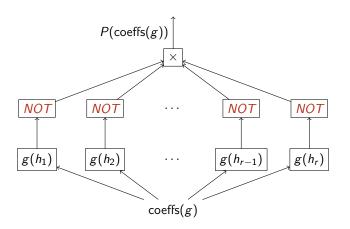
$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.



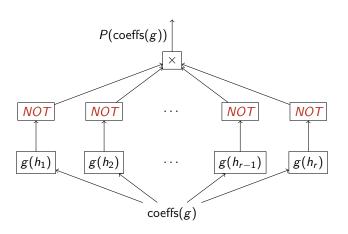
 $\mathcal{H} = \{h_1, \dots, h_r\}$ hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.



 $\mathcal{H} = \{h_1, \dots, h_r\}$ hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

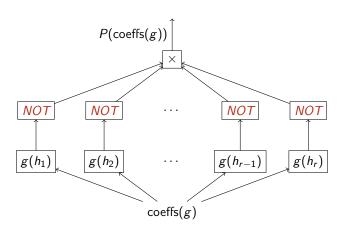


 $\mathcal{H} = \{ \textit{h}_1, \dots, \textit{h}_r \} \text{ hitting set for } \mathcal{C}, \qquad \textit{0} \neq \textit{g}(\bar{\textit{x}}) \text{ input polynomial}.$



$$NOT(0) = nonzero$$

$$\mathcal{H} = \{h_1, \dots, h_r\}$$
 hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.



$$NOT(0) = nonzero$$
 $NOT(nonzero) = 0$

Given: Vector coeffs $(g_n) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$

Given: Vector coeffs
$$(g_n) \in \mathbb{F}^N$$
, point $h \in \mathbb{F}^n$

$$coeffs(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}], \qquad \{m_1, \dots, m_N\} = \mathcal{M}.$$

Given: Vector coeffs
$$(g_n) \in \mathbb{F}^N$$
, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$. Let eval $(h) = [m_1(h), m_2(h), \dots, m_N(h)]$.

Given: Vector coeffs
$$(g_n) \in \mathbb{F}^N$$
, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$.

Let eval
$$(h) = [m_1(h), m_2(h), \dots, m_N(h)].$$

Now
$$g(h) = \langle \mathsf{coeffs}(g), \mathsf{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h)$$
.

Given: Vector coeffs
$$(g_n) \in \mathbb{F}^N$$
, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}], \qquad \{m_1, \dots, m_N\} = \mathcal{M}.$ Let $\text{eval}(h) = [m_1(h), m_2(h), \dots, m_N(h)].$ Now $g(h) = \langle \text{coeffs}(g), \text{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h).$

Note:

ightharpoonup Linear polynomial in coeffs(g).

Given: Vector coeffs
$$(g_n) \in \mathbb{F}^N$$
, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}], \qquad \{m_1, \dots, m_N\} = \mathcal{M}.$ Let $\text{eval}(h) = [m_1(h), m_2(h), \dots, m_N(h)].$ Now $g(h) = \langle \text{coeffs}(g), \text{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h).$

Note:

- ightharpoonup Linear polynomial in coeffs(g).
- ▶ We can "hardwire" eval(h) in our circuit, for all $h \in \mathcal{H}$.

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: For all $x \in \mathbb{F}_q$, $x^q - x = 0$

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: For all $x \in \mathbb{F}_q$, $x^q - x = 0$

$$\Rightarrow$$
 For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: For all $x \in \mathbb{F}_q$, $x^q - x = 0$

$$\Rightarrow$$
 For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Output: $(\langle \mathsf{coeffs}(g), \mathsf{eval}(h) \rangle)^{q-1} - 1$.

Given: Vector coeffs $(g_n) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: For all $x \in \mathbb{F}_q$, $x^q - x = 0$

$$\Rightarrow$$
 For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Output: $(\langle \operatorname{coeffs}(g), \operatorname{eval}(h) \rangle)^{q-1} - 1$.

$$P(\mathsf{coeffs}(g)) pprox \prod_{h \in \mathcal{H}} \Big((\langle \mathsf{coeffs}(g), \mathsf{eval}(h) \rangle)^{q-1} - 1 \Big)$$

$$Degree(P) \le |\mathcal{H}| q \le poly(N),$$
 $Size(P) \le poly(N).$

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$

Goal: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots.

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Need to restrict range($g_n(h)$).

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Need to restrict range($g_n(h)$).

Rough Estimate:

Suppose $|\operatorname{coeffs}(g)| \le L$, $deg(g_n) = \operatorname{poly}(n)$, and $|h| \le k$.

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Need to restrict range($g_n(h)$).

Rough Estimate:

Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g_n) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g_n(h)| \approx L \cdot N \cdot k^d$

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Need to restrict range($g_n(h)$).

Rough Estimate:

Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g_n) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g_n(h)| \approx L \cdot N \cdot k^d$ For $d \sim n^3$, $N \sim \exp(n \log d)$ and $LNk^d = N^{\omega(1)}$.

Given: Vector coeffs $(g_n) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g_n(h) \neq 0$, using a polynomial.

Fact: Univariate q(x) of degree d has $\leq d$ roots. \Rightarrow degree $(q) \approx \text{domain}(q) \approx \text{range}(g_n(h))$.

Need to restrict range($g_n(h)$).

Rough Estimate:

Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g_n) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g_n(h)| \approx L \cdot N \cdot k^d$ For $d \sim n^3$, $N \sim \exp(n \log d)$ and $LNk^d = N^{\omega(1)}$.

Cannot directly work with eval(h).

Goal: Check if $g_n(h) = 0$ using a small range.

Goal: Check if $g_n(h) = 0$ using a small range.

Chinese Remainder Theorem

For an integer $-2^{\ell} \leq M \leq 2^{\ell}$, if $M \mod p_i = 0$ for distinct primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Goal: Check if $g_n(h) = 0$ using a small range.

Chinese Remainder Theorem

For an integer $-2^{\ell} \leq M \leq 2^{\ell}$, if $M \mod p_i = 0$ for distinct primes $p_1, \ldots, p_{2\ell}$; then M = 0.

For large enough $\ell = \operatorname{poly}(d, \log N)$ and primes p_1, \dots, p_ℓ , let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$ = $[m_1(h) \mod p_i, \dots, m_r(h) \mod p_i] \in \mathbb{C}^N$

Goal: Check if $g_n(h) = 0$ using a small range.

Chinese Remainder Theorem

For an integer $-2^{\ell} \leq M \leq 2^{\ell}$, if $M \mod p_i = 0$ for distinct primes $p_1, \ldots, p_{2\ell}$; then M = 0.

For large enough $\ell = \operatorname{poly}(d, \log N)$ and primes p_1, \ldots, p_ℓ , let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$ $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$ $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N).$

Goal: Check if $g_n(h) = 0$ using a small range.

Chinese Remainder Theorem

For an integer $-2^{\ell} \leq M \leq 2^{\ell}$, if $M \mod p_i = 0$ for distinct primes $p_1, \ldots, p_{2\ell}$; then M = 0.

For large enough $\ell = \operatorname{poly}(d, \log N)$ and primes p_1, \ldots, p_ℓ , let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$ $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$ $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N)$.

For $|\operatorname{coeffs}(g)| \le L$, $|\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle| \le \operatorname{poly}(N, L, d)$.

Goal: Check if $g_n(h) = 0$ using a small range.

Chinese Remainder Theorem

For an integer $-2^{\ell} \leq M \leq 2^{\ell}$, if $M \mod p_i = 0$ for distinct primes $p_1, \ldots, p_{2\ell}$; then M = 0.

For large enough $\ell = \operatorname{poly}(d, \log N)$ and primes p_1, \ldots, p_ℓ , let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$ $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$ $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N)$.

For $|\operatorname{coeffs}(g)| \le L$, $|\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle| \le \operatorname{poly}(N, L, d)$.

$$[g_n(h) = 0] \equiv \bigwedge_{i \in [\ell]} [\langle \mathsf{coeffs}(g), \mathsf{eval}_i(h) \rangle =_{p_i} 0]$$

Note: Can "hardwire" eval_i(h) for all $i \in [\ell]$ and $h \in \mathcal{H}$.

$$[x =_{p_i} 0] \approx \prod_{\substack{-M \le a \le M \\ p_i \nmid a}} (x - a)$$

For M = poly(L, N, d) = poly(N).

$$[x =_{p_i} 0] \approx \prod_{\substack{-M \le a \le M \\ p_i \nmid a}} (x - a)$$

For M = poly(L, N, d) = poly(N).

Defining Equation for $\mathsf{VP}_\mathbb{C}$

$$P(\mathsf{coeffs}(g)) pprox \prod_{h \in \mathcal{H}} \prod_{\substack{i \in [\ell] \ -M \leq a \leq M \ p_i \nmid a}} (\langle \mathsf{coeffs}(g), \mathsf{eval}_i(h) \rangle - a)$$

$$Deg(P) \le |\mathcal{H}| poly(n) poly(N) \le poly(N)$$

 $Size(P) \le poly(N)$.

Results for VP

Theorem [CKRST20] (Defining Equations for $VP'_{\mathbb{C}}$) For n,d and $N=\binom{n+d}{n}$, There exists a nonzero $P(Z_1,\ldots,Z_N)\in VP(N)$ such that for all $f\in VP_{\mathbb{C}}(n,d)$ with coefficients in $\{-N,\ldots,N\}$, $P(\operatorname{coeffs}(f))=0$.

Theorem [CKRST20] (Defining Equations for $\mathsf{VP}_\mathbb{F}$) For any fixed finite field \mathbb{F} , and $n,d,N=\binom{n+d}{n}$, There exists a nonzero $P(Z_1,\ldots,Z_N)\in\mathsf{VP}_\mathbb{F}(N)$ such that for all $f\in\mathsf{VP}_\mathbb{F}(n,d)$, $P(\mathsf{coeffs}(f))=0$.

Results for VNP

```
Theorem [CKRST20] (Defining Equations for VNP'_{\mathbb{C}})
For n,d and N=\binom{n+d}{n},
There exists a nonzero Q(Z_1,\ldots,Z_N)\in VP(N) such that
for all f\in VNP_{\mathbb{C}}(n,d) with coefficients in \{-N,\ldots,N\},
Q(coeffs(f))=0.
```

Theorem [CKRST20] (Defining Equations for VNP_{\mathbb{F}}) For any fixed finite field \mathbb{F} , and $n,d,N=\binom{n+d}{n}$, There exists a nonzero $Q(Z_1,\ldots,Z_N)\in \mathsf{VP}_{\mathbb{F}}(N)$ such that for all $f\in \mathsf{VNP}_{\mathbb{F}}(n,d)$, $Q(\mathsf{coeffs}(f))=0$.

Summary

Existence of small hitting sets gives efficient defining equations in interesting restricted settings.

Summary

- Existence of small hitting sets gives efficient defining equations in interesting restricted settings.
- Efficient defining exist for polynomials with "small" coefficients, in both VP and VNP.

Summary

- Existence of small hitting sets gives efficient defining equations in interesting restricted settings.
- Efficient defining exist for polynomials with "small" coefficients, in both VP and VNP.
- Existence of defining equations cannot separate VP and VNP. The hitting sets and the defining equations are different.

About the Results

► The restriction is only on the polynomials, circuits can use any constants.

Well-studied natural polynomials have small coefficients. e.g. Determinant, Permanent, Clique polynomial, ...

About the Results

► The restriction is only on the polynomials, circuits can use any constants.

Well-studied natural polynomials have small coefficients. e.g. Determinant, Permanent, Clique polynomial, ...

Defining equations are not large in the usual sense.
Finding "non-roots" of equations is usually not hard.

About the Results

The restriction is only on the polynomials, circuits can use any constants.

Well-studied natural polynomials have small coefficients. e.g. Determinant, Permanent, Clique polynomial, ...

- Defining equations are not large in the usual sense.
 Finding "non-roots" of equations is usually not hard.
- Non-explicitness of defining equations comes from the non-explicitness of the hitting sets used.

Questions

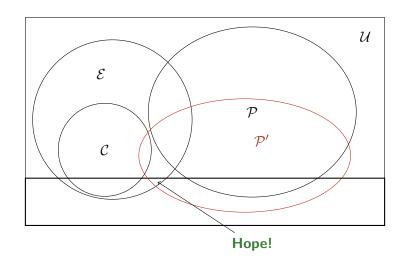
- ▶ Does all of VP (or VNP) have efficient defining equations?
 - Unlikely that our proof extends. Do the results imply something stronger?
 - Constant free VP and VNP.

Questions

- Does all of VP (or VNP) have efficient defining equations?
 - Unlikely that our proof extends. Do the results imply something stronger?
 - Constant free VP and VNP.
- Are there small explicit hitting sets for small circuits?
 - Bootstrapping: Constructions from low variate hitting sets and hardness [AGS18,KST19,GKSS19,And20].

Questions

- Does all of VP (or VNP) have efficient defining equations?
 - Unlikely that our proof extends. Do the results imply something stronger?
 - Constant free VP and VNP.
- Are there small explicit hitting sets for small circuits?
 - Bootstrapping: Constructions from low variate hitting sets and hardness [AGS18,KST19,GKSS19,And20].
- ▶ Defining equations for other models not covered by [FSV18]?
 - Our proof technique will need small coefficients.



Thank You