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Brascamp-Lieb Inequality

Given {Bj : Rn → Rnj}j∈[m] and c ∈ Rm
+:

∃C < ∞?

∫
Rn

m∏
j=1

fj(Bj(x))
cj ≤ C

m∏
j=1

(∫
Rnj

fj(xj)
)cj

.

Example: Holder’s inequality, Loomis-Whitney, Prekopa-Leindler, ...
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Brascamp-Lieb Polytope

Holder’s inequality is true for all c ∈ Rm
+ with

∑m
j=1 cj = 1.

∃C < ∞?

∫
Rn

m∏
j=1

fj(Bj(x))
cj ≤ C

m∏
j=1

(∫
Rnj

fj(xj)
)cj

.

In general, set of feasible exponents x ∈ Rm
+ is a convex polytope:

∀V ⊆ Rn :
m∑
j=1

xj · dim(im(BT
j ) ∩ V ) ≤ dim(V )

∀Uj ⊆ im(BT
j ) :

∑
j

xj · dim(Uj) ≤ dim(
m∑
j=1

Uj)

Motivation: geodesic convex optimization, scaling framework,
generalized submodular optimization
Pseudo-polynomial algorithms known, even NP/ coNP open
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Example: Linear Matroid Polytope

For {Bj := vTj }j∈[m], the polytope is linear matroid polytope

P(V ) := {x ∈ Rm
+ : ∀S ⊆ [m] : x(S) ≤ rkV (S)}.

Definition

f : 2[n] → R is submodular iff ∀S ,T ⊆ [n]:

f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ).

Same definition holds for functions on lattice (with ∨,∧).

S → rk(VS) is submodular on sets;
U → − dim(im(BT ) ∩ U) is submodular on vector subspaces
{Uj} → dim(

∑
j Uj) is submodular on vector subspaces
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Rank of a Matrix

A ∈ Fm×n, rk(A) = ... (audience participation)
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Rank of Matrix Space

Given A1, ...,Ak ⊆ Rm×n or A := ⟨A1, ...,Ak⟩

rk(A) := rkR(x)

(∑k
i=1 xiAi

)
= maxA∈A rk(A)

= rk(A) for random A ∼ A (algorithm)

Definition (Edmond’s Problem)

Given matrix space A ⊆ Rn×n, decide whether rk(A) = n.

Theorem (Polynomial Identity Testing, KI04)

Deterministic poly time algorithm for Edmond’s Problem
=⇒ very strong arithmetic circuit lower bounds!
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Non-Commutative Rank of Matrix Space

Given A1, ...,Ak ⊆ Rm×n or A := ⟨A1, ...,Ak⟩

ncrk(A) := rkR(⟨x⟩)

(∑k
i=1 xiAi

)

ncrk(A) := min{dim(U) + dim(V ) s.t. A|U,V ≡ 0}

Theorem (GGOW15, IKQS15, HH21)

Non-commutative rank can be computed in deterministic poly time.
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Properties

rk(A) ≤ ncrk(A) ≤ 2rk(A)

Invariant under change of basis A → PAQ for det(P) det(Q) ̸= 0

ncrk is submodular minimization over vector spaces
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Examples

Bipartite graph:

maxM∈M |M| = rk = ncrk = minS∈VC |S |

General graph:

Digression: fractional matching polytope
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Properties

Invariant under change of basis A → PAQ for det(P) det(Q) ̸= 0

rk(A) ≤ ncrk(A)

ncrk is submodular minimization over vector spaces

Theorem (IKQS15)

rk(A) ≤ lim
d→∞

rk(A{d})

d
= max

d≥m,n

rk(A{d})

d
= ncrk(A)
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Examples

General graph:

Proposition (Lovasz, OS22)

For {Ai ,j := eie
T
j − eje

T
i }(i ,j)∈G ,

max
M∈M

2|M| = rk(A) ̸= ncrk(A) = max
x∈FM

2⟨x , 1⃗⟩.

Rank one inputs:

Proposition (Matroid Intersection)

For {Aj := ajb
T
j }j∈[m]

max
S∈IA∩IB

|S | = rk(A) = ncrk(A) = min
S⊆[m]

rkA(S) + rkB(S).
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Matroid Matching

Definition (Lovasz)

Given graph G = (V ,E ) and matroid M on ground set V , find matching
M in G such that V (M) is independent in M.

Generalizes graph matching and matroid intersection

In general: requires exponential M queries, also NP-hard

Linear matroids: min-max characterization and fast algorithms

Theorem (Lovasz)

Given pairs {(aj , bj) ⊆ Fn}j∈[m], let {Aj := ajb
T
j − bja

T
j }. Then rk(A) is

twice the maximum linear matroid matching.
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E , I) and a set of rank two lines {ℓj ⊆ E}j∈[m], a
fractional matroid matching x ∈ Rm

+ satisfies

∀F ∈ F (M) :
m∑
j=1

xj · rk(ℓj ∩ F ) ≤ rk(F ).

Fractional relaxation to matroid matching

In general: can be optimized over in poly time given access to certain
oracles [Chang et al, GP13]

Linear matroids over Q: exactly equivalent to BL polytope!

But above algorithm leads to bit size explosion
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Main Result

Theorem (OS22)

For pairs {Bj := (aj , bj) ⊆ Fn}j∈[m], then fractional matroid matching
polytope is equivalent to the Brascamp-Lieb polytope on this input.
Further, let {Aj := ajb

T
j − bja

T
j }. Then

ncrk(A) = max
x∈FMM(B)

2⟨x , 1⃗⟩ = max
x∈P(B)

2⟨x , 1⃗⟩.

Corollary

There is a strongly poly algorithm for rank 2 BL unweighted optimization.
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Submodularity and BL Polytope Dual

Proposition (Chang et al)

For general weighted optimization over BL polytope, the optimal dual
solution is supported on a chain

V1 ⊆ ... ⊆ Vk ⊆ Rn.

Proposition (Chang et al)

For rank two Brascamp-Lieb input {Bj}j∈[m]

max
x∈P(B)

2⟨x , 1⃗⟩ = min
(U⊆V ) cover

dim(U) + dim(V ).
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Main Result

Proposition (OS22)

For Brascamp-Lieb input {Bj = (aj , bj)}j∈[m], let {Aj := aj ∧ bj}j∈[m].
Then

ncrk(A) = max
x∈P(B)

2⟨x , 1⃗⟩.

Proof.

(≤): consider any cover (U,V ) of B, then A|U,V ≡ 0 so

ncrk(A) ≤ min
(U⊆V ) cover

dim(U) + dim(V ).

(≥): consider any (U,V ) such that A|U,V ≡ 0, then (U,V ) is a cover so

ncrk(A) ≥ min
(U⊆V ) cover

dim(U) + dim(V ).
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Conclusion

Main result [OS22] combined with ncrk algorithm [IKQS] gives
strongly polynomial for unweighted optimization of rank 2 BL.

How about weighted optimization?

Even NP, coNP certificates are not known.

Connections to other comb-opt questions?

Connection to other notions of tensor rank?
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