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@ Brascamp-Lieb Theorem (with examples)
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Brascamp-Lieb Inequality

Given {Bj R — Rnf}je[m] and ¢ € R_T:

3C < o0? /Rnll;'"[lfs-(Bj(x))Cf < < ﬁ(/,,-
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Brascamp-Lieb Inequality

Given {Bj R — Rnf}je[m] and ¢ € R_T:

3C < 007 Anﬁg(sj(x))q < < ﬁ(/mg-(xj))q.

Example: Holder's inequality, Loomis-Whitney, Prekopa-Leindler, ...
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Brascamp-Lieb Polytope

@ Holder's inequality is true for all ¢ € R7 with Zjn;l ¢ =1
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Brascamp-Lieb Polytope

@ Holder's inequality is true for all ¢ € R’ with ZJ’":l ¢ =1
sc<or [ TIaeens < ¢ TI( [, 59)°
Rr - . R"
j=1 j=1

@ In general, set of feasible exponents x € R is a convex polytope:
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Brascamp-Lieb Polytope

@ Holder's inequality is true for all ¢ € R’ with ZJ’":l ¢ =1

3C < o0? /Rnf[ﬂ'(Bj(X))Cj < C f[(/anﬁ(ﬁ))q

J=

@ In general, set of feasible exponents x € R is a convex polytope:

YV CR: Y x-dim(im(B]) N V) < dim(V)
j=1

VU; Cim( ij dim(U;) < dlm(z Uj)

j=1
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Brascamp-Lieb Polytope

@ Holder's inequality is true for all ¢ € R’ with ZJ’":l ¢ =1

m

3C < oo? Anﬁg(sj(x))CJ < C H(/ang()g))c".

Jj=1

@ In general, set of feasible exponents x € R is a convex polytope:

YV CR: Y x-dim(im(B]) N V) < dim(V)
j=1

VU; Cim( ij dim(U;) < dlm(z Uj)

Jj=1
Motivation: geodesic convex optimization, scaling framework,
generalized submodular optimization

9/61



Brascamp-Lieb Polytope

@ Holder's inequality is true for all ¢ € R’ with ZJ’":l ¢ =1

m

3C < oo? Anﬁg(sj(x))CJ < C H(/ang()g)>c".

Jj=1

@ In general, set of feasible exponents x € R is a convex polytope:

YV CR: Y x-dim(im(B]) N V) < dim(V)
j=1

VU; Cim( ij dim(U;) < dlm(z Uj)

J=1
Motivation: geodesic convex optimization, scaling framework,

generalized submodular optimization
Pseudo-polynomial algorithms known, even NP/ coNP open
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Example: Linear Matroid Polytope
e For {B; := \/J-T}je[m], the polytope is linear matroid polytope

P(V):={x € R} :VS C[m]:x(S)<rky(S)}.
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Example: Linear Matroid Polytope

e For {B; := \/J-T}je[m], the polytope is linear matroid polytope

P(V):={x € R} :VS C[m]:x(S)<rky(S)}.

Definition

f :2l"l - R is submodular iff VS, T C [n]:

f(S)+f(T)>f(SUT)+f(SNT).

Same definition holds for functions on lattice (with V, A).
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Example: Linear Matroid Polytope

e For {B; := \/J-T}je[m], the polytope is linear matroid polytope

P(V):={x € R} :VS C[m]:x(S)<rky(S)}.

Definition

f :2l"l - R is submodular iff VS, T C [n]:

f(S)+f(T)>f(SUT)+f(SNT).

Same definition holds for functions on lattice (with V, A).

@ S — rk(Vs) is submodular on sets;
U — —dim(im(BT) N U) is submodular on vector subspaces
{U;} = dim(3_; U;) is submodular on vector subspaces
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@ Rank and Non-Commutative Rank of Matrix Spaces
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Rank of a Matrix

A e ™" rk(A) = ... (audience participation)
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Rank of Matrix Space

Given Al,...,Ak - RMXM or A := <A1, ...,Ak>
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Rank of Matrix Space

Given Al, ...,Ak - RMXM or A := <A1, ...,Ak>
[ rk(A) = rkR(X)<Zf-(:1 XiAi)
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Rank of Matrix Space

Given A]_, ...,Ak - RMXM or A := <A1, vy Ak>
L rk(A) = rkR(X)<fo:1 X;A,‘) = MaXacA I’k(A)
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Rank of Matrix Space

Given Al, Ak CRM™Nor A := <A1, ...,Ak>
o rk(A) rkR(X) ( ZI 1 X;A; = MaXacA I’k(A)

Definition (Edmond’s Problem)

Given matrix space A C R"*", decide whether rk(.A) = n.
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Rank of Matrix Space

Given Al, Ak CRM™XMor A: <A1, ceey Ak>

L rk(A) = rk]R(X)(ZI 1X, ) = MaXacA rk(A)
= rk(A) for random A ~ A (algorithm)

Definition (Edmond’s Problem)

Given matrix space A C R"*", decide whether rk(.A) = n.
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Rank of Matrix Space

Given Ay, ..., A CR™ " or A: <A1, ...,Ak>

o rk(A) = rkR(X)<Z,- 1 XA ) = maxac.4 rk(A)
= rk(A) for random A ~ A (algorithm)

Definition (Edmond's Problem)

Given matrix space A C R"*", decide whether rk(.A) = n.

Theorem (Polynomial Identity Testing, KI04)

Deterministic poly time algorithm for Edmond’s Problem
= very strong arithmetic circuit lower bounds!
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Non-Commutative Rank of Matrix Space

Given A1, ..., Ax CR™M or A= (Ar, ..., Ai)
e ncrk(A) := rkR(<X>)<fo:1 XiAi)
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Non-Commutative Rank of Matrix Space

Given A1, ..., Ax CR™M or A= (Ar, ..., Ai)
e ncrk(A) := rkR(<X>)<fo:1 XiAi)

o ncrk(A) := min{dim(V) +dim(V) s.t. Al =0}
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Non-Commutative Rank of Matrix Space

Given Al, ...,Ak - R™*M or A := <A1, ceey Ak>
e ncrk(A) := rkR(<X>)<fozl XiAi)

o ncrk(A) := min{dim(U) + dim(V) s.t. Alyy =0}

Theorem (GGOW15, IKQS15, HH21)

Non-commutative rank can be computed in deterministic poly time.
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Properties

o rk(A) < ncrk(A) < 2rk(A)
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Properties

o rk(A) < ncrk(A) < 2rk(A)

@ Invariant under change of basis A — PAQ for det(P)det(Q) # 0

26/61



Properties

o rk(A) < ncrk(A) < 2rk(A)
@ Invariant under change of basis A — PAQ for det(P)det(Q) # 0

@ ncrk is submodular minimization over vector spaces
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Examples

o Bipartite graph:
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Examples

e Bipartite graph: maxpea |[M| = rk = ncrk = minscyc | S|
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Examples

e Bipartite graph: maxpea |[M| = rk = nerk = minsevc | S|

o General graph:

30/61



Examples

e Bipartite graph: maxpea |[M| = rk = nerk = minsevc | S|

@ General graph: Digression: fractional matching polytope
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Properties

@ Invariant under change of basis A — PAQ for det(P)det(Q) # 0
o rk(A) < ncrk(A)

@ ncrk is submodular minimization over vector spaces
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Properties

@ Invariant under change of basis A — PAQ for det(P)det(Q) # 0
o rk(A) < ncrk(A)

@ ncrk is submodular minimization over vector spaces

Theorem (IKQS15)

{d} {d}
rk(A) < dIim rk(.,é;) = max rk(f;) = ncrk(A)
—00

d>m,n
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Examples

@ General graph:
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Examples

o General graph:

Proposition (Lovasz, 0S22)

T T
For {A;; := eiej —eje; Hij)eG

fmax 2|M| = rk(A) # ncrk(A) = max 2(x,1).
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Examples

o General graph:

Proposition (Lovasz, 0S22)

T T
For {A;; := eiej —eje; Hij)eG

fmax 2|M| = rk(A) # ncrk(A) = max 2(x,1).

@ Rank one inputs:
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Examples

o General graph:

Proposition (Lovasz, 0S22)

T T
For {A;; := eiej —eje; Hij)eG

fmax 2|M| = rk(A) # ncrk(A) = max 2(x,1).

@ Rank one inputs:

Proposition (Matroid Intersection)
For {Aj = aij-T}J-e[m]

B |S| = rk(A) = ncrk(A) = Srgi,r;] rka(S) + rkg(S).
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@ Fractional Linear Matroid Matching
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Matroid Matching

Definition (Lovasz)

Given graph G = (V, E) and matroid M on ground set V, find matching
M in G such that V(M) is independent in M.
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Matroid Matching

Definition (Lovasz)

Given graph G = (V, E) and matroid M on ground set V, find matching
M in G such that V(M) is independent in M.

@ Generalizes graph matching and matroid intersection

40/61



Matroid Matching

Definition (Lovasz)

Given graph G = (V, E) and matroid M on ground set V, find matching
M in G such that V(M) is independent in M.

@ Generalizes graph matching and matroid intersection

@ In general: requires exponential M queries, also NP-hard
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Matroid Matching

Definition (Lovasz)

Given graph G = (V, E) and matroid M on ground set V, find matching
M in G such that V(M) is independent in M.

@ Generalizes graph matching and matroid intersection
@ In general: requires exponential M queries, also NP-hard

@ Linear matroids: min-max characterization and fast algorithms
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Matroid Matching

Definition (Lovasz)

Given graph G = (V, E) and matroid M on ground set V, find matching
M in G such that V(M) is independent in M.

@ Generalizes graph matching and matroid intersection
@ In general: requires exponential M queries, also NP-hard

@ Linear matroids: min-max characterization and fast algorithms

Theorem (Lovasz)

Given pairs {(aj, bj) C F"}jc[m), let {A; = anT b; aT} Then rk(A) is
twice the maximum linear matroid matching.
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E,Z) and a set of rank two lines {{; C E};c[p), 2
fractional matroid matching x € R'" satisfies

VF e F(M): ixj -rk(¢; N F) < rk(F).
j=1
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E,Z) and a set of rank two lines {{; C E};c[p), 2
fractional matroid matching x € R satisfies

VF e F(M): ixj -rk(¢; N F) < rk(F).
j=1

@ Fractional relaxation to matroid matching
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E,Z) and a set of rank two lines {{; C E};c[p), 2
fractional matroid matching x € R satisfies

VF e F(M): ixj -rk(¢; N F) < rk(F).
j=1

@ Fractional relaxation to matroid matching

@ In general: can be optimized over in poly time given access to certain
oracles [Chang et al, GP13]
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E,Z) and a set of rank two lines {{; C E};c[p), 2
fractional matroid matching x € R satisfies

VF e F(M): ixj -rk(¢; N F) < rk(F).
j=1

@ Fractional relaxation to matroid matching

@ In general: can be optimized over in poly time given access to certain
oracles [Chang et al, GP13]

@ Linear matroids over Q: exactly equivalent to BL polytope!
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Fractional Matroid Matching

Definition (Van92)

Given matroid M = (E,Z) and a set of rank two lines {{; C E};c[p), 2
fractional matroid matching x € R" satisfies

VF e F(M): ixj -rk(¢; N F) < rk(F).
j=1

@ Fractional relaxation to matroid matching

@ In general: can be optimized over in poly time given access to certain
oracles [Chang et al, GP13]

@ Linear matroids over Q: exactly equivalent to BL polytope!
But above algorithm leads to bit size explosion
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Main Result

Theorem (0S22)

For pairs {B; := (aj, bj) € F"}c(m), then fractional matroid matching
polytope is equivalent to the Brascamp-Lieb polytope on this input.
Further, let {A; == an — b; aT} Then

ncrk(A) = Xepxﬂal\il((B) 2(x,1) = Xénpa(é) 2(x,1).
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Main Result

Theorem (0S22)

For pairs {B; := (aj, bj) € F"}c(m), then fractional matroid matching
polytope is equivalent to the Brascamp-Lieb polytope on this input.
Further, let {A; == an — b; aT} Then

ncrk(A) = Xepxﬂal\il((B) 2(x,1) = Xrenpe?é) 2(x,1).

There is a strongly poly algorithm for rank 2 BL unweighted optimization.
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@ Algorithm and Proof
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Submodularity and BL Polytope Dual

Proposition (Chang et al)

For general weighted optimization over BL polytope, the optimal dual
solution is supported on a chain

ViC...CVCR"
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Submodularity and BL Polytope Dual

Proposition (Chang et al)

For general weighted optimization over BL polytope, the optimal dual
solution is supported on a chain

Vic..CVCR".

Proposition (Chang et al)

For rank two Brascamp-Lieb input {B;}jc[m]

X21}3;1()1(3)2<x, 1) = (Ug?)irc]over dim(U) + dim(V).
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Main Result

Proposition (0S22)

For Brascamp-Lieb input {Bj = (aj, bj) }jc[m) let {A; := aj A bj}jem]-
Then

ratdA) = mere 2p ).
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Main Result
Proposition (0S22)

For Brascamp-Lieb input {Bj = (aj, bj) }jc[m) let {A; := aj A bj}jem]-
Then

ncrk(A) = xénpa()é) 2(x,1).

(<): consider any cover (U, V) of B, then Al =0 so

ncrk(A) < min

L. dim(U) + dim(V).
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Main Result
Proposition (0S22)

For Brascamp-Lieb input {Bj = (aj, bj) }jc[m) let {A; := aj A bj}jem]-
Then

ncrk(A) = xénpa()é) 2(x,1).

(<): consider any cover (U, V) of B, then Al =0 so

< : : : '
ncrk(A) < (Ugr\p)”gover dim(U) + dim(V)

(>): consider any (U, V) such that Al = 0, then (U, V) is a cover so

ncrk(A) > min

. v
L dim(U) + dim(V)

{ O

56 /61



@ Conclusion
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Conclusion

e Main result [0S22] combined with ncrk algorithm [IKQS] gives
strongly polynomial for unweighted optimization of rank 2 BL.
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Conclusion

e Main result [0S22] combined with ncrk algorithm [IKQS] gives
strongly polynomial for unweighted optimization of rank 2 BL.

@ How about weighted optimization?

@ Even NP, coNP certificates are not known.
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Conclusion

Main result [0S22] combined with ncrk algorithm [IKQS] gives
strongly polynomial for unweighted optimization of rank 2 BL.

@ How about weighted optimization?
@ Even NP, coNP certificates are not known.
@ Connections to other comb-opt questions?

@ Connection to other notions of tensor rank?
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