The Brascamp-Lieb Inequality: Matroid Matching and Rank of Matrix Spaces

Akshay Ramachandran
University of Amsterdam and CWI

October 21, 2022

Overview

- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion
- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion

Brascamp-Lieb Inequality

Given $\left\{B_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}\right\}_{j \in[m]}$ and $c \in \mathbb{R}_{+}^{m}$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \quad \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

Brascamp-Lieb Inequality

Given $\left\{B_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}\right\}_{j \in[m]}$ and $c \in \mathbb{R}_{+}^{m}$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \quad \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

Example: Holder's inequality, Loomis-Whitney, Prekopa-Leindler, ...

Brascamp-Lieb Polytope

- Holder's inequality is true for all $c \in \mathbb{R}_{+}^{m}$ with $\sum_{j=1}^{m} c_{j}=1$.

Brascamp-Lieb Polytope

- Holder's inequality is true for all $c \in \mathbb{R}_{+}^{m}$ with $\sum_{j=1}^{m} c_{j}=1$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

- In general, set of feasible exponents $x \in \mathbb{R}_{+}^{m}$ is a convex polytope:

Brascamp-Lieb Polytope

- Holder's inequality is true for all $c \in \mathbb{R}_{+}^{m}$ with $\sum_{j=1}^{m} c_{j}=1$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

- In general, set of feasible exponents $x \in \mathbb{R}_{+}^{m}$ is a convex polytope:

$$
\begin{aligned}
& \forall V \subseteq \mathbb{R}^{n}: \sum_{j=1}^{m} x_{j} \cdot \operatorname{dim}\left(\operatorname{im}\left(B_{j}^{T}\right) \cap V\right) \leq \operatorname{dim}(V) \\
& \forall U_{j} \subseteq \operatorname{im}\left(B_{j}^{T}\right): \sum_{j} x_{j} \cdot \operatorname{dim}\left(U_{j}\right) \leq \operatorname{dim}\left(\sum_{j=1}^{m} U_{j}\right)
\end{aligned}
$$

Brascamp-Lieb Polytope

- Holder's inequality is true for all $c \in \mathbb{R}_{+}^{m}$ with $\sum_{j=1}^{m} c_{j}=1$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

- In general, set of feasible exponents $x \in \mathbb{R}_{+}^{m}$ is a convex polytope:

$$
\begin{aligned}
& \forall V \subseteq \mathbb{R}^{n}: \sum_{j=1}^{m} x_{j} \cdot \operatorname{dim}\left(\operatorname{im}\left(B_{j}^{T}\right) \cap V\right) \leq \operatorname{dim}(V) \\
& \forall U_{j} \subseteq \operatorname{im}\left(B_{j}^{T}\right): \sum_{j} x_{j} \cdot \operatorname{dim}\left(U_{j}\right) \leq \operatorname{dim}\left(\sum_{j=1}^{m} U_{j}\right)
\end{aligned}
$$

Motivation: geodesic convex optimization, scaling framework, generalized submodular optimization

Brascamp-Lieb Polytope

- Holder's inequality is true for all $c \in \mathbb{R}_{+}^{m}$ with $\sum_{j=1}^{m} c_{j}=1$.

$$
\exists C<\infty ? \quad \int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}\left(B_{j}(x)\right)^{c_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\left(x_{j}\right)\right)^{c_{j}}
$$

- In general, set of feasible exponents $x \in \mathbb{R}_{+}^{m}$ is a convex polytope:

$$
\begin{aligned}
& \forall V \subseteq \mathbb{R}^{n}: \sum_{j=1}^{m} x_{j} \cdot \operatorname{dim}\left(\operatorname{im}\left(B_{j}^{T}\right) \cap V\right) \leq \operatorname{dim}(V) \\
& \forall U_{j} \subseteq \operatorname{im}\left(B_{j}^{T}\right): \sum_{j} x_{j} \cdot \operatorname{dim}\left(U_{j}\right) \leq \operatorname{dim}\left(\sum_{j=1}^{m} U_{j}\right)
\end{aligned}
$$

Motivation: geodesic convex optimization, scaling framework, generalized submodular optimization
Pseudo-polynomial algorithms known, even NP/ coNP open

Example: Linear Matroid Polytope

- For $\left\{B_{j}:=v_{j}^{T}\right\}_{j \in[m]}$, the polytope is linear matroid polytope

$$
P(V):=\left\{x \in \mathbb{R}_{+}^{m}: \forall S \subseteq[m]: x(S) \leq \operatorname{rk}_{V}(S)\right\}
$$

Example: Linear Matroid Polytope

- For $\left\{B_{j}:=v_{j}^{T}\right\}_{j \in[m]}$, the polytope is linear matroid polytope

$$
P(V):=\left\{x \in \mathbb{R}_{+}^{m}: \forall S \subseteq[m]: x(S) \leq \operatorname{rk}_{V}(S)\right\}
$$

Definition

$f: 2^{[n]} \rightarrow \mathbb{R}$ is submodular iff $\forall S, T \subseteq[n]:$

$$
f(S)+f(T) \geq f(S \cup T)+f(S \cap T)
$$

Same definition holds for functions on lattice (with \vee, \wedge).

Example: Linear Matroid Polytope

- For $\left\{B_{j}:=v_{j}^{T}\right\}_{j \in[m]}$, the polytope is linear matroid polytope

$$
P(V):=\left\{x \in \mathbb{R}_{+}^{m}: \forall S \subseteq[m]: x(S) \leq \operatorname{rk}_{V}(S)\right\}
$$

Definition

$f: 2^{[n]} \rightarrow \mathbb{R}$ is submodular iff $\forall S, T \subseteq[n]:$

$$
f(S)+f(T) \geq f(S \cup T)+f(S \cap T)
$$

Same definition holds for functions on lattice (with \vee, \wedge).

- $S \rightarrow \mathrm{rk}\left(V_{S}\right)$ is submodular on sets; $U \rightarrow-\operatorname{dim}\left(\operatorname{im}\left(B^{T}\right) \cap U\right)$ is submodular on vector subspaces $\left\{U_{j}\right\} \rightarrow \operatorname{dim}\left(\sum_{j} U_{j}\right)$ is submodular on vector subspaces
- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion

Rank of a Matrix

$A \in \mathbb{F}^{m \times n}, \operatorname{rk}(A)=\ldots$ (audience participation)

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{rk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(x)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)$

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{rk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(x)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)=\max _{A \in \mathcal{A}} \operatorname{rk}(A)$

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{rk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(x)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)=\max _{A \in \mathcal{A}} \operatorname{rk}(A)$

Definition (Edmond's Problem)

Given matrix space $\mathcal{A} \subseteq \mathbb{R}^{n \times n}$, decide whether $\operatorname{rk}(\mathcal{A})=n$.

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{rk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(x)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)=\max _{A \in \mathcal{A}} \operatorname{rk}(A)$
$=\operatorname{rk}(A)$ for random $A \sim \mathcal{A}$ (algorithm)

Definition (Edmond's Problem)

Given matrix space $\mathcal{A} \subseteq \mathbb{R}^{n \times n}$, decide whether $\operatorname{rk}(\mathcal{A})=n$.

Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{rk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(x)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)=\max _{A \in \mathcal{A}} \operatorname{rk}(A)$
$=\operatorname{rk}(A)$ for random $A \sim \mathcal{A}$ (algorithm)

Definition (Edmond's Problem)

Given matrix space $\mathcal{A} \subseteq \mathbb{R}^{n \times n}$, decide whether $\operatorname{rk}(\mathcal{A})=n$.

Theorem (Polynomial Identity Testing, KI04)

Deterministic poly time algorithm for Edmond's Problem
\Longrightarrow very strong arithmetic circuit lower bounds!

Non-Commutative Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{ncrk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(\langle x\rangle)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)$

Non-Commutative Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{ncrk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(\langle x\rangle)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)$
- $\operatorname{ncrk}(\mathcal{A}):=\min \left\{\operatorname{dim}(U)+\operatorname{dim}(V)\right.$ s.t. $\left.\left.\mathcal{A}\right|_{\bar{U}, \bar{V}} \equiv 0\right\}$

Non-Commutative Rank of Matrix Space

Given $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{m \times n}$ or $\mathcal{A}:=\left\langle A_{1}, \ldots, A_{k}\right\rangle$

- $\operatorname{ncrk}(\mathcal{A}):=\operatorname{rk}_{\mathbb{R}(\langle x\rangle)}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)$
- $\operatorname{ncrk}(\mathcal{A}):=\min \left\{\operatorname{dim}(U)+\operatorname{dim}(V)\right.$ s.t. $\left.\left.\mathcal{A}\right|_{\bar{U}, \bar{V}} \equiv 0\right\}$

Theorem (GGOW15, IKQS15, HH21)

Non-commutative rank can be computed in deterministic poly time.

Properties

- $\operatorname{rk}(\mathcal{A}) \leq \operatorname{ncrk}(\mathcal{A}) \leq 2 \operatorname{rk}(\mathcal{A})$

Properties

- $\operatorname{rk}(\mathcal{A}) \leq \operatorname{ncrk}(\mathcal{A}) \leq 2 \operatorname{rk}(\mathcal{A})$
- Invariant under change of basis $\mathcal{A} \rightarrow P \mathcal{A} Q$ for $\operatorname{det}(P) \operatorname{det}(Q) \neq 0$

Properties

- $\operatorname{rk}(\mathcal{A}) \leq \operatorname{ncrk}(\mathcal{A}) \leq 2 \operatorname{rk}(\mathcal{A})$
- Invariant under change of basis $\mathcal{A} \rightarrow P \mathcal{A} Q$ for $\operatorname{det}(P) \operatorname{det}(Q) \neq 0$
- ncrk is submodular minimization over vector spaces

Examples

- Bipartite graph:

Examples

- Bipartite graph: $\max _{M \in \mathcal{M}}|M|=\mathrm{rk}=\mathrm{ncrk}=\min _{S \in V C}|S|$

Examples

- Bipartite graph: $\max _{M \in \mathcal{M}}|M|=\mathrm{rk}=\mathrm{ncrk}=\min _{S \in V C}|S|$
- General graph:

Examples

- Bipartite graph: $\max _{M \in \mathcal{M}}|M|=\mathrm{rk}=\mathrm{ncrk}=\min _{S \in V C}|S|$
- General graph: Digression: fractional matching polytope

Properties

- Invariant under change of basis $\mathcal{A} \rightarrow P \mathcal{A} Q$ for $\operatorname{det}(P) \operatorname{det}(Q) \neq 0$
- $\operatorname{rk}(\mathcal{A}) \leq \operatorname{ncrk}(\mathcal{A})$
- ncrk is submodular minimization over vector spaces

Properties

- Invariant under change of basis $\mathcal{A} \rightarrow P \mathcal{A} Q$ for $\operatorname{det}(P) \operatorname{det}(Q) \neq 0$
- $\operatorname{rk}(\mathcal{A}) \leq \operatorname{ncrk}(\mathcal{A})$
- ncrk is submodular minimization over vector spaces

Theorem (IKQS15)

$$
\operatorname{rk}(\mathcal{A}) \leq \lim _{d \rightarrow \infty} \frac{\operatorname{rk}\left(\mathcal{A}^{\{d\}}\right)}{d}=\max _{d \geq m, n} \frac{\operatorname{rk}\left(\mathcal{A}^{\{d\}}\right)}{d}=\operatorname{ncrk}(\mathcal{A})
$$

Examples

- General graph:

Examples

- General graph:

Proposition (Lovasz, OS22)

For $\left\{A_{i, j}:=e_{i} e_{j}^{T}-e_{j} e_{i}^{T}\right\}_{(i, j) \in G,}$

$$
\max _{M \in \mathcal{M}} 2|M|=\operatorname{rk}(\mathcal{A}) \neq \operatorname{ncrk}(\mathcal{A})=\max _{x \in F M} 2\langle x, \overrightarrow{1}\rangle .
$$

Examples

- General graph:

Proposition (Lovasz, OS22)

For $\left\{A_{i, j}:=e_{i} e_{j}^{T}-e_{j} e_{i}^{T}\right\}_{(i, j) \in G,}$

$$
\max _{M \in \mathcal{M}} 2|M|=\operatorname{rk}(\mathcal{A}) \neq \operatorname{ncrk}(\mathcal{A})=\max _{x \in F M} 2\langle x, \overrightarrow{1}\rangle .
$$

- Rank one inputs:

Examples

- General graph:

Proposition (Lovasz, OS22)

For $\left\{A_{i, j}:=e_{i} e_{j}^{T}-e_{j} e_{i}^{T}\right\}_{(i, j) \in G,}$

$$
\max _{M \in \mathcal{M}} 2|M|=\operatorname{rk}(\mathcal{A}) \neq \operatorname{ncrk}(\mathcal{A})=\max _{x \in F M} 2\langle x, \overrightarrow{1}\rangle .
$$

- Rank one inputs:

Proposition (Matroid Intersection)

For $\left\{A_{j}:=a_{j} b_{j}^{T}\right\}_{j \in[m]}$

$$
\max _{S \in \mathcal{I}_{A} \cap \mathcal{I}_{B}}|S|=\operatorname{rk}(\mathcal{A})=\operatorname{ncrk}(\mathcal{A})=\min _{S \subseteq[m]} \mathrm{rk}_{A}(S)+\operatorname{rk}_{B}(\bar{S}) .
$$

- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion

Matroid Matching

Definition (Lovasz)

Given graph $G=(V, E)$ and matroid \mathcal{M} on ground set V, find matching M in G such that $V(M)$ is independent in \mathcal{M}.

Matroid Matching

Definition (Lovasz)

Given graph $G=(V, E)$ and matroid \mathcal{M} on ground set V, find matching M in G such that $V(M)$ is independent in \mathcal{M}.

- Generalizes graph matching and matroid intersection

Matroid Matching

Definition (Lovasz)

Given graph $G=(V, E)$ and matroid \mathcal{M} on ground set V, find matching M in G such that $V(M)$ is independent in \mathcal{M}.

- Generalizes graph matching and matroid intersection
- In general: requires exponential \mathcal{M} queries, also NP-hard

Matroid Matching

Definition (Lovasz)

Given graph $G=(V, E)$ and matroid \mathcal{M} on ground set V, find matching M in G such that $V(M)$ is independent in \mathcal{M}.

- Generalizes graph matching and matroid intersection
- In general: requires exponential \mathcal{M} queries, also NP-hard
- Linear matroids: min-max characterization and fast algorithms

Matroid Matching

Definition (Lovasz)

Given graph $G=(V, E)$ and matroid \mathcal{M} on ground set V, find matching M in G such that $V(M)$ is independent in \mathcal{M}.

- Generalizes graph matching and matroid intersection
- In general: requires exponential \mathcal{M} queries, also NP-hard
- Linear matroids: min-max characterization and fast algorithms

Theorem (Lovasz)
Given pairs $\left\{\left(a_{j}, b_{j}\right) \subseteq \mathbb{F}^{n}\right\}_{j \in[m]}$, let $\left\{A_{j}:=a_{j} b_{j}^{T}-b_{j} a_{j}^{T}\right\}$. Then $\operatorname{rk}(\mathcal{A})$ is twice the maximum linear matroid matching.

Fractional Matroid Matching

Definition (Van92)

Given matroid $\mathcal{M}=(E, \mathcal{I})$ and a set of rank two lines $\left\{\ell_{j} \subseteq E\right\}_{j \in[m]}$, a fractional matroid matching $x \in \mathbb{R}_{+}^{m}$ satisfies

$$
\forall F \in F(\mathcal{M}): \sum_{j=1}^{m} x_{j} \cdot \operatorname{rk}\left(\ell_{j} \cap F\right) \leq \operatorname{rk}(F)
$$

Fractional Matroid Matching

Definition (Van92)

Given matroid $\mathcal{M}=(E, \mathcal{I})$ and a set of rank two lines $\left\{\ell_{j} \subseteq E\right\}_{j \in[m]}$, a fractional matroid matching $x \in \mathbb{R}_{+}^{m}$ satisfies

$$
\forall F \in F(\mathcal{M}): \sum_{j=1}^{m} x_{j} \cdot \operatorname{rk}\left(\ell_{j} \cap F\right) \leq \operatorname{rk}(F)
$$

- Fractional relaxation to matroid matching

Fractional Matroid Matching

Definition (Van92)

Given matroid $\mathcal{M}=(E, \mathcal{I})$ and a set of rank two lines $\left\{\ell_{j} \subseteq E\right\}_{j \in[m]}$, a fractional matroid matching $x \in \mathbb{R}_{+}^{m}$ satisfies

$$
\forall F \in F(\mathcal{M}): \sum_{j=1}^{m} x_{j} \cdot \operatorname{rk}\left(\ell_{j} \cap F\right) \leq \operatorname{rk}(F)
$$

- Fractional relaxation to matroid matching
- In general: can be optimized over in poly time given access to certain oracles [Chang et al, GP13]

Fractional Matroid Matching

Definition (Van92)

Given matroid $\mathcal{M}=(E, \mathcal{I})$ and a set of rank two lines $\left\{\ell_{j} \subseteq E\right\}_{j \in[m]}$, a fractional matroid matching $x \in \mathbb{R}_{+}^{m}$ satisfies

$$
\forall F \in F(\mathcal{M}): \sum_{j=1}^{m} x_{j} \cdot \operatorname{rk}\left(\ell_{j} \cap F\right) \leq \operatorname{rk}(F)
$$

- Fractional relaxation to matroid matching
- In general: can be optimized over in poly time given access to certain oracles [Chang et al, GP13]
- Linear matroids over \mathbb{Q} : exactly equivalent to BL polytope!

Fractional Matroid Matching

Definition (Van92)

Given matroid $\mathcal{M}=(E, \mathcal{I})$ and a set of rank two lines $\left\{\ell_{j} \subseteq E\right\}_{j \in[m]}$, a fractional matroid matching $x \in \mathbb{R}_{+}^{m}$ satisfies

$$
\forall F \in F(\mathcal{M}): \sum_{j=1}^{m} x_{j} \cdot \operatorname{rk}\left(\ell_{j} \cap F\right) \leq \operatorname{rk}(F)
$$

- Fractional relaxation to matroid matching
- In general: can be optimized over in poly time given access to certain oracles [Chang et al, GP13]
- Linear matroids over \mathbb{Q} : exactly equivalent to BL polytope! But above algorithm leads to bit size explosion

Main Result

Theorem (OS22)

For pairs $\left\{B_{j}:=\left(a_{j}, b_{j}\right) \subseteq \mathbb{F}^{n}\right\}_{j \in[m]}$, then fractional matroid matching polytope is equivalent to the Brascamp-Lieb polytope on this input. Further, let $\left\{A_{j}:=a_{j} b_{j}^{T}-b_{j} a_{j}^{T}\right\}$. Then

$$
\operatorname{ncrk}(\mathcal{A})=\max _{x \in F M M(B)} 2\langle x, \overrightarrow{1}\rangle=\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle .
$$

Main Result

Theorem (OS22)

For pairs $\left\{B_{j}:=\left(a_{j}, b_{j}\right) \subseteq \mathbb{F}^{n}\right\}_{j \in[m]}$, then fractional matroid matching polytope is equivalent to the Brascamp-Lieb polytope on this input. Further, let $\left\{A_{j}:=a_{j} b_{j}^{T}-b_{j} a_{j}^{T}\right\}$. Then

$$
\operatorname{ncrk}(\mathcal{A})=\max _{x \in F M M(B)} 2\langle x, \overrightarrow{1}\rangle=\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle .
$$

Corollary

There is a strongly poly algorithm for rank 2 BL unweighted optimization.

- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion

Submodularity and BL Polytope Dual

Proposition (Chang et al)

For general weighted optimization over BL polytope, the optimal dual solution is supported on a chain

$$
V_{1} \subseteq \ldots \subseteq V_{k} \subseteq \mathbb{R}^{n}
$$

Submodularity and BL Polytope Dual

Proposition (Chang et al)

For general weighted optimization over BL polytope, the optimal dual solution is supported on a chain

$$
V_{1} \subseteq \ldots \subseteq V_{k} \subseteq \mathbb{R}^{n}
$$

Proposition (Chang et al)

For rank two Brascamp-Lieb input $\left\{B_{j}\right\}_{j \in[m]}$

$$
\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle=\min _{(U \subseteq V) \text { cover }} \operatorname{dim}(U)+\operatorname{dim}(V)
$$

Main Result

Proposition (OS22)

For Brascamp-Lieb input $\left\{B_{j}=\left(a_{j}, b_{j}\right)\right\}_{j \in[m]}$, let $\left\{A_{j}:=a_{j} \wedge b_{j}\right\}_{j \in[m]}$. Then

$$
\operatorname{ncrk}(\mathcal{A})=\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle
$$

Main Result

Proposition (OS22)

For Brascamp-Lieb input $\left\{B_{j}=\left(a_{j}, b_{j}\right)\right\}_{j \in[m]}$, let $\left\{A_{j}:=a_{j} \wedge b_{j}\right\}_{j \in[m]}$. Then

$$
\operatorname{ncrk}(\mathcal{A})=\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle
$$

Proof.

$(\leq):$ consider any cover (U, V) of B, then $\left.\mathcal{A}\right|_{\bar{U}, \bar{V}} \equiv 0$ so

$$
\operatorname{ncrk}(\mathcal{A}) \leq \min _{(U \subseteq V) \text { cover }} \operatorname{dim}(U)+\operatorname{dim}(V)
$$

Main Result

Proposition (OS22)

For Brascamp-Lieb input $\left\{B_{j}=\left(a_{j}, b_{j}\right)\right\}_{j \in[m]}$, let $\left\{A_{j}:=a_{j} \wedge b_{j}\right\}_{j \in[m]}$. Then

$$
\operatorname{ncrk}(\mathcal{A})=\max _{x \in P(B)} 2\langle x, \overrightarrow{1}\rangle
$$

Proof.

$(\leq):$ consider any cover (U, V) of B, then $\left.\mathcal{A}\right|_{\bar{U}, \bar{V}} \equiv 0$ so

$$
\operatorname{ncrk}(\mathcal{A}) \leq \min _{(U \subseteq V) \text { cover }} \operatorname{dim}(U)+\operatorname{dim}(V)
$$

$(\geq):$ consider any (U, V) such that $\left.\mathcal{A}\right|_{\bar{U}, \bar{V}} \equiv 0$, then (U, V) is a cover so

$$
\operatorname{ncrk}(\mathcal{A}) \geq \min _{(U \subseteq V) \text { cover }} \operatorname{dim}(U)+\operatorname{dim}(V)
$$

- Brascamp-Lieb Theorem (with examples)
- Rank and Non-Commutative Rank of Matrix Spaces
- Fractional Linear Matroid Matching
- Algorithm and Proof
- Conclusion

Conclusion

- Main result [OS22] combined with ncrk algorithm [IKQS] gives strongly polynomial for unweighted optimization of rank 2 BL .

Conclusion

- Main result [OS22] combined with ncrk algorithm [IKQS] gives strongly polynomial for unweighted optimization of rank $2 B L$.
- How about weighted optimization?
- Even NP, coNP certificates are not known.

Conclusion

- Main result [OS22] combined with ncrk algorithm [IKQS] gives strongly polynomial for unweighted optimization of rank $2 B L$.
- How about weighted optimization?
- Even NP, coNP certificates are not known.
- Connections to other comb-opt questions?
- Connection to other notions of tensor rank?

References I

Garg, Gurvits, Oliveira, Wigderson (2015)
A deterministic polynomial time algorithm for non-commutative rational identity testing

- Ivanyos, Qiao, Subrahmanyam (2018)

Constructive noncommutative rank computation is in deterministic polynomial time
嗇 Oki, Soma (2022)
Algebraic algorithms for fractional linear matroid parity via non-commutative rank
囯 Gijswijt, Pap (2022)
An algorithm for weighted fractional matroid matching

