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Teaser problem

▶ What is the size of the largest subset of [n]× [n] containing no three points of the
form (x, y), (x, y + d), (x + d, z), with d ̸= 0?

▶ What does this have to do with algorithms for matrix multiplication?
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A billion dollar question

▶ [Str69]: n × n matrices can be multiplied using O(n2.81) arithmetic operations

▶ Can this be improved to O(n2)?
▶ ω := inf{τ ∈ R | n × n matrices can be multiplied using O(nτ) ops. in F}
▶ ω < 2.372 [ADW+24]
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Overview
▶ The group theoretic approach of [CU03, CKSU05]

⋄ Summary of what’s known; some nontrivial bounds
⋄ Potential approaches to ω = 2; barriers

▶ Intermediate questions towards ω = 2 [Pra24]

⋄ Trapezoid-free sets; skew-corner free sets
⋄ Reasons to be optimistic?

▶ Further questions

We know very little about the limits of current approaches!
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The triple product property

A group-theoretic approach [CU03]
▶ Let G be a finite group

▶ Say X, Y, Z ⊆ G satisfy the triple product property (TPP) if

xx′−1yy′−1zz′−1 = 1G ⇐⇒ x = x′, y = y′, z = z′

▶ Given A ∈ F|X|×|Y|, B ∈ F|Y|×|Z|, compute

(∑ Ax,yxy−1)(∑ By,zyz−1) ∈ F[G]

▶ Coefficient of xz−1 = (row x of A) · (column z of B)

Theorem
Suppose X, Y, Z satisfy the TPP. Then (|X||Y||Z|)ω/3 ≤ ∑ dω

i , where di are the
dimensions of the irreducible representations of G.
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The triple product property

A trivial bound

▶ For G abelian and |X| = |Y| = |Z| = n, this simplifies to ω ≤ logn |G|

▶ Intuition: reducing n × n matrix mult. to convolution in G, which takes
≈ |G| = nlogn |G|-time

Example
Let G = Z3

m.
X = (Zm, 0, 0), Y = (0, Zm, 0), Z = (0, 0, Zm)

These satisfy the TPP, so ω ≤ 3.

▶ Optimal for abelian groups: addition map (x, y, z) → x + y + z injective, so
|G| ≥ n3
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The simultaneous triple product property

The simultaneous triple product property

▶ Best bounds on ω: simultaneous triple product property (STPP) in abelian groups

▶ Families (Xi)
r
i=1, (Yi)

r
i=1, (Zi)

r
i=1 satisfy STPP if

⋄ For all i, Xi, Yi, Zi satisfy the TPP
⋄ (xi − y′i) + (yj − z′j) + (zk − x′k) = 0 ⇐⇒ i = j = k

▶ Embedding independent instances of matrix mult into F[G]

Theorem
Suppose (Xi)

r
i=1, (Yi)

r
i=1, (Zi)

r
i=1 satisfy the STPP. Then ∑r

i=1(|Xi||Yi||Zi|)ω/3 ≤ |G|.

▶ Intuition: if we can perform r independent instances of n × n matrix mult in
time |G|, expect to perform 1 instance in time |G|/r
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The simultaneous triple product property

A nontrivial bound on ω

▶ In Z3
m, let

X1 = (∗, 0, 0) Y1 = (0, ∗, 0) Z1 = (0, 0, ∗)
X2 = (0, ∗, 0) Y2 = (0, 0, ∗) Z2 = (∗, 0, 0)

where ∗ denotes a nonzero element of Zm

▶ These satisfy the STPP:

X1 − Y1 = (∗, ∗, 0) Y1 − Z1 = (0, ∗, ∗) Z1 − X1 = (∗, 0, ∗)
X2 − Y2 = (0, ∗, ∗) Y2 − Z2 = (∗, 0, ∗) Z2 − X2 = (∗, ∗, 0)

▶ Hence ω ≤ logm−1 m3/2. For m = 16, this gives ω ≤ 2.816
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The simultaneous double product property

The simultaneous double product property [CKSU05]

Definition
Set families (Ai)

r
i=1, (Bi)

r
i=1 satisfy the simultaneous double product property (SDPP)

if:

⋄ |Ai + Bi| = |Ai||Bi| for all i
⋄ ai + bj ̸= ak + bk whenever i ̸= j

Theorem
Suppose Ai, Bi satisfy the SDPP. Then ∑(|Ai||Bi|)ω/2 ≤ |G|3/2.

▶ Open: can this yield ω = 2? [Gre]

Conjecture
For arbitrarily large n, there exists an abelian group G of order n2+o(1), and n pairs
of subsets Ai, Bi with |Ai||Bi| ≥ n2−o(1) satisfying the SDPP.
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The simultaneous double product property

The best SDPP construction known

Theorem
Suppose Ai, Bi satisfy the SDPP. Then ∑(|Ai||Bi|)ω/2 ≤ |G|3/2.

Example (The virus)
Let G = Z2ℓ

m . For S ⊂ [2ℓ], |S| = ℓ, define

AS = {x ∈ Z2ℓ
m : xi = 0 for i ∈ S, xi ̸= 0 else}

BS = {x ∈ Z2ℓ
m : xi ̸= 0 for i ∈ S, xi = 0 else}

▶ (2ℓ
ℓ ) · (m − 1)ωℓ ≤ m3ℓ, so ω ≤ logm−1(m

3ℓ/(2ℓ
ℓ ))/ℓ

▶ Taking m = 6, ℓ → ∞, this gives ω < 2.48
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Barriers to ω = 2

Barriers

▶ Current algorithms: STPP’s in Zn
m with small m and growing n

Theorem ([BCC+17])
For every m, there exists cm > 0 such that no STPP in Zn

m can yield a bound of
ω ≤ 2 + cm.

▶ cm → 0 as m → ∞, so this says nothing for e.g. cyclic groups
▶ Can we rule out STPP’s in arbitrary abelian groups, and in particular, cyclic

groups?
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Barriers to ω = 2

Summary
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A hypergraph view of STPPs
▶ Let Mn be “matrix multiplication” hypergraph

⋄ Vertex set [n]2 ⊔ [n]2 ⊔ [n]2

⋄ Edges ((i, j), (j, k), (k, i))
▶ Let XG be “group addition” hypergraph

⋄ Vertex set G ⊔ G ⊔ G
⋄ Edges (x, y, z), x + y + z = 0

▶ TPP: induced copy of Mn inside of XG

▶ STPP: induced disjoint union of Mn’s in XG
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Mn and trapezoids

Definition
Call a hypergraph trapezoid-free if any two vertices in different parts have at most
one common neighbor in the third part.

▶ Mn is trapezoid-free

Definition
Given a hypergraph X, let Val(X) be the maximum number of hyperedges in any
induced trapezoid-free subhypergraph of X.

▶ Val(Mn) = n3 (maximum possible!)
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Why “trapezoids”?

▶ Let Val(n) := Val(XZn)

▶ Hypergraph induced by X, Y, Z ⊆ Zn is trapezoid-free: any x′ ∈ X, y′ ∈ Y,
there is at most one solution to

x′ + y + z = 0
x + y′ + z = 0

with x ∈ X, y ∈ Y, z ∈ Z (and symmetrically)
▶ Number of hyperedges = number of solutions to x + y + z = 0
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Why “trapezoids”?

▶ Pictorially: let ∆n := {(x, y, z) ∈ [n] : x + y + z = n}

▶ Delete lines parallel parallel to sides to eliminate all vertices of equilateral
trapezoids

▶ Val(n): maximum number of points that can remain
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Trapezoids

Theorem ([Pra24])

⋄ If STPP constructions yield ω = 2 using the family of groups Zn
q , where q is a prime power,

then Val(n) ≥ n1+c for some absolute c > 0.
⋄ If [CKSU05, Conjecture 4.7] is true, then Val(n) ≥ n4/3−o(1).

Conjecture
Val(n) < n1+o(1).

Proof idea.
Prior barriers reduce this to understanding if STPPs in Zn can yield ω = 2.

If X ≥ Y =⇒ Val(X) ≥ Val(Y). So, XZn ≥ ⊔k
i=1MN =⇒ Val(n) ≥ kN3.
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A relaxation: skew corner-free sets

▶ Let X, Y, Z ⊆ Zn be trapezoid-free

▶ The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates
contains no skew corners: (x, y), (x, y + z), (x + z, w):

Conjecture
If S ⊆ [n]2 is skew corner-free, then |S| ≤ n1+o(1).

▶ Traditional corners: (x, y), (x, y + d), (x + d, y)
▶ Exist corner-free subsets of [n]2 as big as n2−o(1) [AS74]
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Large skew-corner free sets exist!

Theorem ([Bek24])
There exist skew corner-free subset of [n]2 of size n2−o(1).

Proof sketch.
Let B = [m]d. Consider the set

Ar,t = {(x, y) ∈ B2 : ||x||2 = ||y||2 = r, x · y = t}.

If (x, y), (x, y + z) ∈ Ar,t, then x · z = 0. So there can be no point (w, x + z) /∈ Ar,t as
||y + x||2 > r. Hence Ar,t contains no skew corners.
By pigeonhole, can choose r, t so that |Ar,t| ≥ m2d/(dm2)2.
Embed into [(2m)d] via base 2m expansion.
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Conclusion
▶ Know that n ≤ Val(n) < o(n3/2). Is Val(n) = n3/2−o(1)?

⋄ Would this imply that ω = 2?
▶ Is “the virus” the best SDPP construction? Nikodym sets?
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