Combinatorial aspects of matrix multiplication

Kevin Pratt

Courant Institute, NYU

Kevin Pratt Combinatorial aspects of matrix multiplication Courant Institute, NYU

Teaser problem

What is the size of the largest subset of [n] × [n] containing no three points of the form (x, y), (x, y + d), (x + d, z), with d ≠ 0?

Teaser problem

What is the size of the largest subset of [n] × [n] containing no three points of the form (x, y), (x, y + d), (x + d, z), with d ≠ 0?

•	•	•	٠	•	•	٠	•	•	•
•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	٠	•

Combinatorial aspects of matrix multiplication

Teaser problem

What is the size of the largest subset of [n] × [n] containing no three points of the form (x, y), (x, y + d), (x + d, z), with d ≠ 0?

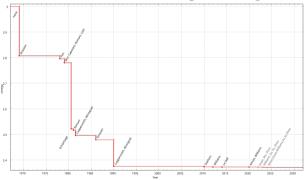
What does this have to do with algorithms for matrix multiplication?

▶ [Str69]: $n \times n$ matrices can be multiplied using $O(n^{2.81})$ arithmetic operations

- [Str69]: $n \times n$ matrices can be multiplied using $O(n^{2.81})$ arithmetic operations
- ► Can this be improved to *O*(*n*²)?

- [Str69]: $n \times n$ matrices can be multiplied using $O(n^{2.81})$ arithmetic operations
- ► Can this be improved to *O*(*n*²)?
- $\omega := \inf\{\tau \in \mathbb{R} \mid n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ ops. in } \mathbb{F}\}$

- [Str69]: $n \times n$ matrices can be multiplied using $O(n^{2.81})$ arithmetic operations
- ► Can this be improved to *O*(*n*²)?
- $\omega := \inf\{\tau \in \mathbb{R} \mid n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ ops. in } \mathbb{F}\}$



Combinatorial aspects of matrix multiplication

- ▶ [Str69]: $n \times n$ matrices can be multiplied using $O(n^{2.81})$ arithmetic operations
- ► Can this be improved to *O*(*n*²)?
- $\omega := \inf\{\tau \in \mathbb{R} \mid n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ ops. in } \mathbb{F}\}$
- ▶ *ω* < 2.372 [ADW⁺24]

▶ The group theoretic approach of [CU03, CKSU05]

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers
- Intermediate questions towards $\omega = 2$ [Pra24]

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers
- Intermediate questions towards $\omega = 2$ [Pra24]
 - Trapezoid-free sets; skew-corner free sets

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers
- Intermediate questions towards $\omega = 2$ [Pra24]
 - Trapezoid-free sets; skew-corner free sets
 - Reasons to be optimistic?

Kevin Pratt Combinatorial aspects of matrix multiplication

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers
- Intermediate questions towards $\omega = 2$ [Pra24]
 - Trapezoid-free sets; skew-corner free sets
 - Reasons to be optimistic?
- Further questions

- ▶ The group theoretic approach of [CU03, CKSU05]
 - Summary of what's known; some nontrivial bounds
 - Potential approaches to $\omega = 2$; barriers
- Intermediate questions towards $\omega = 2$ [Pra24]
 - Trapezoid-free sets; skew-corner free sets
 - Reasons to be optimistic?
- Further questions

We know very little about the limits of current approaches!

Intermediate questions

The triple product property

A group-theoretic approach [CU03]

► Let *G* be a finite group

The triple product property

A group-theoretic approach [CU03]

- ► Let *G* be a finite group
- Say *X*, *Y*, *Z* \subseteq *G* satisfy the *triple product property* (TPP) if

$$xx'^{-1}yy'^{-1}zz'^{-1} = 1_G \iff x = x', y = y', z = z'$$

The triple product property

A group-theoretic approach [CU03]

- ► Let *G* be a finite group
- Say *X*, *Y*, *Z* \subseteq *G* satisfy the *triple product property* (TPP) if

$$xx'^{-1}yy'^{-1}zz'^{-1} = 1_G \iff x = x', y = y', z = z'$$

• Given $A \in \mathbb{F}^{|X| \times |Y|}$, $B \in \mathbb{F}^{|Y| \times |Z|}$, compute

$$(\sum A_{x,y}xy^{-1})(\sum B_{y,z}yz^{-1}) \in \mathbb{F}[G]$$

Combinatorial aspects of matrix multiplication

The triple product property

A group-theoretic approach [CU03]

- ► Let *G* be a finite group
- ▶ Say *X*, *Y*, *Z* ⊆ *G* satisfy the *triple product property* (TPP) if

$$xx'^{-1}yy'^{-1}zz'^{-1} = 1_G \iff x = x', y = y', z = z'$$

• Given $A \in \mathbb{F}^{|X| \times |Y|}$, $B \in \mathbb{F}^{|Y| \times |Z|}$, compute

$$(\sum A_{x,y}xy^{-1})(\sum B_{y,z}yz^{-1}) \in \mathbb{F}[G]$$

• Coefficient of $xz^{-1} = (row x \text{ of } A) \cdot (column z \text{ of } B)$

Combinatorial aspects of matrix multiplication

The triple product property

A group-theoretic approach [CU03]

- ► Let *G* be a finite group
- ▶ Say *X*, *Y*, *Z* ⊆ *G* satisfy the *triple product property* (TPP) if

$$xx'^{-1}yy'^{-1}zz'^{-1} = 1_G \iff x = x', y = y', z = z'$$

• Given $A \in \mathbb{F}^{|X| \times |Y|}$, $B \in \mathbb{F}^{|Y| \times |Z|}$, compute

$$(\sum A_{x,y}xy^{-1})(\sum B_{y,z}yz^{-1}) \in \mathbb{F}[G]$$

• Coefficient of $xz^{-1} = (row x \text{ of } A) \cdot (column z \text{ of } B)$

Combinatorial aspects of matrix multiplication

The triple product property

A group-theoretic approach [CU03]

- Let *G* be a finite group
- Say *X*, *Y*, *Z* \subseteq *G* satisfy the *triple product property* (TPP) if

$$xx'^{-1}yy'^{-1}zz'^{-1} = 1_G \iff x = x', y = y', z = z'$$

• Given $A \in \mathbb{F}^{|X| \times |Y|}$, $B \in \mathbb{F}^{|Y| \times |Z|}$, compute

$$(\sum A_{x,y}xy^{-1})(\sum B_{y,z}yz^{-1}) \in \mathbb{F}[G]$$

• Coefficient of $xz^{-1} = (row x \text{ of } A) \cdot (column z \text{ of } B)$

Theorem

Kevin Pratt

Suppose X, Y, Z satisfy the TPP. Then $(|X||Y||Z|)^{\omega/3} \leq \sum d_i^{\omega}$, where d_i are the dimensions of the irreducible representations of G.

	Background		Conclusion
The triple product property			
A trivial bound			
► For G abelian a	nd $ X = Y = $	$ Z = n$, this simplifies to $\omega \leq \log_n G $	

	Background	Conclusion
The triple product property		
A trivial bound		

- ► For *G* abelian and |X| = |Y| = |Z| = n, this simplifies to $\omega \le \log_n |G|$
- ► Intuition: reducing $n \times n$ matrix mult. to convolution in *G*, which takes $\approx |G| = n^{\log_n |G|}$ -time

	Background	Conclusion
The triple product property		
A trivial bound		

- ► For *G* abelian and |X| = |Y| = |Z| = n, this simplifies to $\omega \le \log_n |G|$
- ► Intuition: reducing $n \times n$ matrix mult. to convolution in *G*, which takes $\approx |G| = n^{\log_n |G|}$ -time

	Background	Conclusion
The triple product property		
A trivial bound		

- ► For *G* abelian and |X| = |Y| = |Z| = n, this simplifies to $\omega \le \log_n |G|$
- ► Intuition: reducing $n \times n$ matrix mult. to convolution in *G*, which takes $\approx |G| = n^{\log_n |G|}$ -time

Example

Let
$$G = \mathbb{Z}_m^3$$
.
 $X = (\mathbb{Z}_m, 0, 0), Y = (0, \mathbb{Z}_m, 0), Z = (0, 0, \mathbb{Z}_m)$

These satisfy the TPP, so $\omega \leq 3$.

Combinatorial aspects of matrix multiplication

	Background	Conclusion
The triple product property		
A trivial bound		

- ▶ For *G* abelian and |X| = |Y| = |Z| = n, this simplifies to $\omega \le \log_n |G|$
- ► Intuition: reducing $n \times n$ matrix mult. to convolution in *G*, which takes $\approx |G| = n^{\log_n |G|}$ -time

Example

Let
$$G = \mathbb{Z}_m^3$$
.
 $X = (\mathbb{Z}_m, 0, 0), Y = (0, \mathbb{Z}_m, 0), Z = (0, 0, \mathbb{Z}_m)$

These satisfy the TPP, so $\omega \leq 3$.

▶ Optimal for abelian groups: addition map $(x, y, z) \rightarrow x + y + z$ injective, so $|G| \ge n^3$

Combinatorial aspects of matrix multiplication

Intermediate questions

The simultaneous triple product property

The simultaneous triple product property

• Best bounds on ω : *simultaneous triple product property* (STPP) in abelian groups

Intermediate questions

The simultaneous triple product property

The simultaneous triple product property

- Best bounds on ω : *simultaneous triple product property* (STPP) in abelian groups
- ► Families $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy STPP if

Intermediate questions

The simultaneous triple product property

The simultaneous triple product property

- Best bounds on ω : *simultaneous triple product property* (STPP) in abelian groups
- ► Families $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy STPP if
 - ♦ For all i, X_i , Y_i , Z_i satisfy the TPP

Intermediate questions

The simultaneous triple product property

The simultaneous triple product property

- Best bounds on ω : *simultaneous triple product property* (STPP) in abelian groups
- ► Families $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy STPP if
 - ♦ For all *i*, X_i , Y_i , Z_i satisfy the TPP

$$\circ \ (x_i - y_i') + (y_j - z_j') + (z_k - x_k') = 0 \iff i = j = k$$

The simultaneous triple product property

The simultaneous triple product property

Background

- Best bounds on ω : simultaneous triple product property (STPP) in abelian groups
- Families $(X_i)_{i=1}^r$, $(Y_i)_{i=1}^r$, $(Z_i)_{i=1}^r$ satisfy STPP if
 - \diamond For all *i*, *X_i*, *Y_i*, *Z_i* satisfy the TPP
 - $∧ (x_i y'_i) + (y_j z'_i) + (z_k x'_k) = 0 \iff i = j = k$
- Embedding *independent* instances of matrix mult into $\mathbb{F}[G]$

Courant Institute, NYU

The simultaneous triple product property

The simultaneous triple product property

Background

- Best bounds on ω : simultaneous triple product property (STPP) in abelian groups
- Families $(X_i)_{i=1}^r$, $(Y_i)_{i=1}^r$, $(Z_i)_{i=1}^r$ satisfy STPP if
 - \diamond For all *i*, *X_i*, *Y_i*, *Z_i* satisfy the TPP
 - $∧ (x_i y'_i) + (y_j z'_i) + (z_k x'_k) = 0 \iff i = j = k$
- Embedding *independent* instances of matrix mult into $\mathbb{F}[G]$

Courant Institute, NYU

Combinatorial aspects of matrix multiplication

The simultaneous triple product property

The simultaneous triple product property

Background

- Best bounds on ω : *simultaneous triple product property* (STPP) in abelian groups
- ► Families $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy STPP if
 - ♦ For all *i*, X_i , Y_i , Z_i satisfy the TPP
 - $\diamond (x_i y'_i) + (y_j z'_j) + (z_k x'_k) = 0 \iff i = j = k$
- ▶ Embedding *independent* instances of matrix mult into 𝔽[*G*]

Theorem

Kevin Pratt

Suppose $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy the STPP. Then $\sum_{i=1}^r (|X_i| |Y_i| |Z_i|)^{\omega/3} \le |G|$.

• Intuition: if we can perform r independent instances of $n \times n$ matrix mult in time |G|, expect to perform 1 instance in time |G|/r

Suppose $(X_i)_{i=1}^r, (Y_i)_{i=1}^r, (Z_i)_{i=1}^r$ satisfy the STPP. Then $\sum_{i=1}^r (|X_i||Y_i||Z_i|)^{\omega/3} \le |G|$.

Theorem

The simultaneous triple product property

The simultaneous triple product property

Background

- Best bounds on ω : simultaneous triple product property (STPP) in abelian groups
- Families $(X_i)_{i=1}^r$, $(Y_i)_{i=1}^r$, $(Z_i)_{i=1}^r$ satisfy STPP if
 - \diamond For all *i*, *X_i*, *Y_i*, *Z_i* satisfy the TPP
 - ◇ $(x_i y'_i) + (y_j z'_i) + (z_k x'_k) = 0 \iff i = j = k$
- Embedding *independent* instances of matrix mult into $\mathbb{F}[G]$

The simultaneous triple product property

A nontrivial bound on ω

• In \mathbb{Z}_m^3 , let

$$X_1 = (*, 0, 0) \quad Y_1 = (0, *, 0) \quad Z_1 = (0, 0, *)$$

$$X_2 = (0, *, 0) \quad Y_2 = (0, 0, *) \quad Z_2 = (*, 0, 0)$$

where * denotes a nonzero element of \mathbb{Z}_m

The simultaneous triple product property

A nontrivial bound on ω

• In \mathbb{Z}_m^3 , let

$$X_1 = (*,0,0) \quad Y_1 = (0,*,0) \quad Z_1 = (0,0,*)$$

$$X_2 = (0,*,0) \quad Y_2 = (0,0,*) \quad Z_2 = (*,0,0)$$

where * denotes a nonzero element of \mathbb{Z}_m

• These satisfy the STPP:

$$\begin{aligned} X_1 - Y_1 &= (*, *, 0) \quad Y_1 - Z_1 &= (0, *, *) \quad Z_1 - X_1 &= (*, 0, *) \\ X_2 - Y_2 &= (0, *, *) \quad Y_2 - Z_2 &= (*, 0, *) \quad Z_2 - X_2 &= (*, *, 0) \end{aligned}$$

Courant Institute, NYU

Combinatorial aspects of matrix multiplication

The simultaneous triple product property

A nontrivial bound on ω

• In \mathbb{Z}_m^3 , let

$$X_1 = (*,0,0) \quad Y_1 = (0,*,0) \quad Z_1 = (0,0,*)$$

$$X_2 = (0,*,0) \quad Y_2 = (0,0,*) \quad Z_2 = (*,0,0)$$

where * denotes a nonzero element of \mathbb{Z}_m

• These satisfy the STPP:

$$\begin{aligned} X_1 - Y_1 &= (*, *, 0) \quad Y_1 - Z_1 &= (0, *, *) \quad Z_1 - X_1 &= (*, 0, *) \\ X_2 - Y_2 &= (0, *, *) \quad Y_2 - Z_2 &= (*, 0, *) \quad Z_2 - X_2 &= (*, *, 0) \end{aligned}$$

• Hence $\omega \leq \log_{m-1} m^3/2$. For m = 16, this gives $\omega \leq 2.816$

The simultaneous double product property

The simultaneous double product property [CKSU05]

Intermediate questions

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

Intermediate questions

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

◇ $|A_i + B_i| = |A_i||B_i|$ for all *i*

Intermediate questions

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

- $\diamond ||A_i + B_i|| = ||A_i||B_i| \text{ for all } i$
- $a_i + b_j ≠ a_k + b_k$ whenever i ≠ j

Intermediate questions

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

- $\diamond ||A_i + B_i|| = ||A_i||B_i| \text{ for all } i$
- $a_i + b_j ≠ a_k + b_k$ whenever i ≠ j

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

Combinatorial aspects of matrix multiplication

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

• Open: can this yield $\omega = 2$? [Gre]

Combinatorial aspects of matrix multiplication

Conclusion

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

• Open: can this yield $\omega = 2$? [Gre]

Combinatorial aspects of matrix multiplication

The simultaneous double product property [CKSU05]

Definition

Set families $(A_i)_{i=1}^r$, $(B_i)_{i=1}^r$ satisfy the *simultaneous double product property* (SDPP) if:

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

• Open: can this yield $\omega = 2$? [Gre]

Conjecture

Kevin Pratt

For arbitrarily large *n*, there exists an abelian group *G* of order $n^{2+o(1)}$, and *n* pairs of subsets A_i, B_i with $|A_i||B_i| \ge n^{2-o(1)}$ satisfying the SDPP.

Intermediate questions

The simultaneous double product property

The best SDPP construction known

Intermediate questions

The simultaneous double product property

The best SDPP construction known

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

Intermediate questions

The simultaneous double product property

The best SDPP construction known

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

Intermediate questions

The simultaneous double product property

The best SDPP construction known

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

Example (The virus) Let $G = \mathbb{Z}_m^{2\ell}$. For $S \subset [2\ell]$, $|S| = \ell$, define $A_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i = 0 \text{ for } i \in S, x_i \neq 0 \text{ else}\}$

$$B_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i \neq 0 \text{ for } i \in S, x_i = 0 \text{ else}\}$$

Courant Institute, NYU

Combinatorial aspects of matrix multiplication

Intermediate questions

Conclusion

The simultaneous double product property

The best SDPP construction known

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \le |G|^{3/2}$.

Example (The virus) Let $G = \mathbb{Z}_m^{2\ell}$. For $S \subset [2\ell]$, $|S| = \ell$, define $A_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i = 0 \text{ for } i \in S, x_i \neq 0 \text{ else}\}$ $B_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i \neq 0 \text{ for } i \in S, x_i = 0 \text{ else}\}$ $(2\ell) \cdot (m-1)^{\omega \ell} \leq m^{3\ell}, \text{ so } \omega \leq \log_{m-1}(m^{3\ell}/{2\ell \ell})/\ell$

Kevin Pratt

Courant Institute, NYU

Combinatorial aspects of matrix multiplication

Intermediate questions

The simultaneous double product property

The best SDPP construction known

Theorem

Suppose A_i , B_i satisfy the SDPP. Then $\sum (|A_i||B_i|)^{\omega/2} \leq |G|^{3/2}$.

Example (The virus) Let $G = \mathbb{Z}_m^{2\ell}$. For $S \subset [2\ell]$, $|S| = \ell$, define $A_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i = 0 \text{ for } i \in S, x_i \neq 0 \text{ else}\}$ $B_S = \{x \in \mathbb{Z}_m^{2\ell} : x_i \neq 0 \text{ for } i \in S, x_i = 0 \text{ else}\}$ $(\binom{2\ell}{\ell} \cdot (m-1)^{\omega\ell} \le m^{3\ell}, \text{ so } \omega \le \log_{m-1}(m^{3\ell}/\binom{2\ell}{\ell})/\ell$ \blacktriangleright Taking $m = 6, \ell \to \infty$, this gives $\omega < 2.48$

Combinatorial aspects of matrix multiplication

	Background	Conclusion
Barriers to $\omega = 2$		
Denniene		

• Current algorithms: STPP's in \mathbb{Z}_m^n with small *m* and growing *n*

	Background	Conclusion
Barriers to $\omega = 2$		
Denniene		

• Current algorithms: STPP's in \mathbb{Z}_m^n with small *m* and growing *n*

	Background	Conclusion
Barriers to $\omega = 2$		

• Current algorithms: STPP's in \mathbb{Z}_m^n with small *m* and growing *n*

Theorem ([BCC+17])

For every *m*, there exists $c_m > 0$ such that no STPP in \mathbb{Z}_m^n can yield a bound of $\omega \leq 2 + c_m$.

	Background	Conclusion
Barriers to $\omega = 2$		

• Current algorithms: STPP's in \mathbb{Z}_m^n with small *m* and growing *n*

Theorem ([BCC+17])

For every *m*, there exists $c_m > 0$ such that no STPP in \mathbb{Z}_m^n can yield a bound of $\omega \leq 2 + c_m$.

▶ $c_m \rightarrow 0$ as $m \rightarrow \infty$, so this says nothing for e.g. cyclic groups

	Background	Conclusion
Barriers to $\omega = 2$		

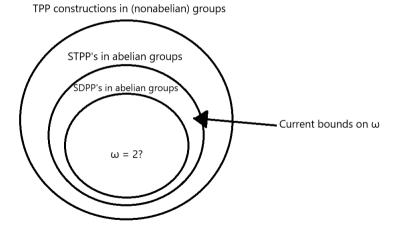
• Current algorithms: STPP's in \mathbb{Z}_m^n with small *m* and growing *n*

Theorem ([BCC+17])

For every *m*, there exists $c_m > 0$ such that no STPP in \mathbb{Z}_m^n can yield a bound of $\omega \le 2 + c_m$.

- ▶ $c_m \rightarrow 0$ as $m \rightarrow \infty$, so this says nothing for e.g. cyclic groups
- Can we rule out STPP's in arbitrary abelian groups, and in particular, cyclic groups?

	Background	Conclusion
Barriers to $\omega = 2$		
Summary		



Combinatorial aspects of matrix multiplication

▶ Let *M_n* be "matrix multiplication" hypergraph

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - Vertex set $[n]^2 ⊔ [n]^2 ⊔ [n]^2$

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - Vertex set $[n]^2 \sqcup [n]^2 \sqcup [n]^2$
 - ♦ Edges ((i,j), (j,k), (k,i))

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - Vertex set $[n]^2 ⊔ [n]^2 ⊔ [n]^2$
 - ♦ Edges ((i,j), (j,k), (k,i))
- ▶ Let *X*_{*G*} be "group addition" hypergraph

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - Vertex set $[n]^2 ⊔ [n]^2 ⊔ [n]^2$
 - ◇ Edges ((i,j), (j,k), (k,i))
- Let X_G be "group addition" hypergraph
 - $\diamond \quad \text{Vertex set } G \sqcup G \sqcup G$

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - $\diamond~$ Vertex set $[n]^2 \sqcup [n]^2 \sqcup [n]^2$
 - ◇ Edges ((i,j), (j,k), (k,i))
- Let X_G be "group addition" hypergraph
 - $\diamond \quad \text{Vertex set } G \sqcup G \sqcup G$
 - Edges (x, y, z), x + y + z = 0

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - $\diamond~$ Vertex set $[n]^2 \sqcup [n]^2 \sqcup [n]^2$
 - ◇ Edges ((i,j), (j,k), (k,i))
- Let X_G be "group addition" hypergraph
 - $\diamond \quad \text{Vertex set } G \sqcup G \sqcup G$
 - Edges (x, y, z), x + y + z = 0
- TPP: induced copy of M_n inside of X_G

- ▶ Let *M_n* be "matrix multiplication" hypergraph
 - $\diamond~$ Vertex set $[n]^2 \sqcup [n]^2 \sqcup [n]^2$
 - ◇ Edges ((i,j), (j,k), (k,i))
- Let X_G be "group addition" hypergraph
 - $\diamond \quad \text{Vertex set } G \sqcup G \sqcup G$
 - Edges (x, y, z), x + y + z = 0
- TPP: induced copy of M_n inside of X_G
- STPP: induced disjoint union of M_n 's in X_G

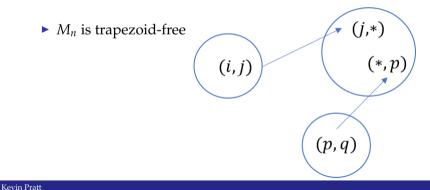
Combinatorial aspects of matrix multiplication

Definition

Call a hypergraph *trapezoid-free* if any two vertices in different parts have at most one common neighbor in the third part.

Definition

Call a hypergraph *trapezoid-free* if any two vertices in different parts have at most one common neighbor in the third part.



Combinatorial aspects of matrix multiplication

Definition

Call a hypergraph *trapezoid-free* if any two vertices in different parts have at most one common neighbor in the third part.

 \blacktriangleright *M_n* is trapezoid-free

M_n and trapezoids

Definition

Call a hypergraph *trapezoid-free* if any two vertices in different parts have at most one common neighbor in the third part.

• M_n is trapezoid-free

Definition

Given a hypergraph X, let Val(X) be the maximum number of hyperedges in any induced trapezoid-free subhypergraph of X.

Combinatorial aspects of matrix multiplication

M_n and trapezoids

Definition

Call a hypergraph *trapezoid-free* if any two vertices in different parts have at most one common neighbor in the third part.

• M_n is trapezoid-free

Definition

Given a hypergraph X, let Val(X) be the maximum number of hyperedges in any induced trapezoid-free subhypergraph of X.

•
$$Val(M_n) = n^3$$
 (maximum possible!)

• Let $Val(n) := Val(X_{\mathbb{Z}_n})$

- Let $Val(n) := Val(X_{\mathbb{Z}_n})$
- ▶ Hypergraph induced by $X, Y, Z \subseteq \mathbb{Z}_n$ is trapezoid-free: any $x' \in X, y' \in Y$, there is at most one solution to

$$x' + y + z = 0$$
$$x + y' + z = 0$$

with $x \in X, y \in Y, z \in Z$ (and symmetrically)

Combinatorial aspects of matrix multiplication

- Let $Val(n) := Val(X_{\mathbb{Z}_n})$
- ▶ Hypergraph induced by $X, Y, Z \subseteq \mathbb{Z}_n$ is trapezoid-free: any $x' \in X, y' \in Y$, there is at most one solution to

$$x' + y + z = 0$$
$$x + y' + z = 0$$

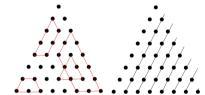
with $x \in X, y \in Y, z \in Z$ (and symmetrically)

▶ Number of hyperedges = number of solutions to x + y + z = 0

Combinatorial aspects of matrix multiplication

• Pictorially: let $\Delta_n := \{(x, y, z) \in [n] : x + y + z = n\}$

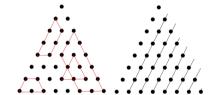
• Pictorially: let $\Delta_n := \{(x, y, z) \in [n] : x + y + z = n\}$



 Delete lines parallel parallel to sides to eliminate all vertices of equilateral trapezoids

Combinatorial aspects of matrix multiplication

• Pictorially: let $\Delta_n := \{(x, y, z) \in [n] : x + y + z = n\}$



- Delete lines parallel parallel to sides to eliminate all vertices of equilateral trapezoids
- ► *Val*(*n*): maximum number of points that can remain

Combinatorial aspects of matrix multiplication

Kevin Pratt Combinatorial aspects of matrix multiplication Courant Institute, NYU

Theorem ([Pra24])

Kevin Pratt Combinatorial aspects of matrix multiplication Courant Institute, NYU

Theorem ([Pra24])

◦ If STPP constructions yield $\omega = 2$ using the family of groups \mathbb{Z}_q^n , where q is a prime power, then $Val(n) \ge n^{1+c}$ for some absolute c > 0.

Theorem ([Pra24])

- If STPP constructions yield $\omega = 2$ using the family of groups \mathbb{Z}_q^n , where q is a prime power, then $Val(n) \ge n^{1+c}$ for some absolute c > 0.
- ♦ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Theorem ([Pra24])

- If STPP constructions yield $\omega = 2$ using the family of groups \mathbb{Z}_q^n , where q is a prime power, then $Val(n) \ge n^{1+c}$ for some absolute c > 0.
- ♦ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Theorem ([Pra24])

- If STPP constructions yield $\omega = 2$ using the family of groups \mathbb{Z}_q^n , where q is a prime power, then $Val(n) \ge n^{1+c}$ for some absolute c > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Theorem ([Pra24])

- If STPP constructions yield $\omega = 2$ using the family of groups \mathbb{Z}_q^n , where q is a prime power, then $Val(n) \ge n^{1+c}$ for some absolute c > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Theorem ([Pra24])

- If STPP constructions yield ω = 2 using the family of groups \mathbb{Z}_q^n , where q is a prime power, then Val(n) ≥ n^{1+c} for some absolute c > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Proof idea.

Prior barriers reduce this to understanding if STPPs in \mathbb{Z}_n can yield $\omega = 2$.

Theorem ([Pra24])

- If STPP constructions yield ω = 2 using the family of groups \mathbb{Z}_q^n , where q is a prime power, then Val(n) ≥ n^{1+c} for some absolute c > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Proof idea.

Prior barriers reduce this to understanding if STPPs in \mathbb{Z}_n can yield $\omega = 2$.

Theorem ([Pra24])

- If STPP constructions yield ω = 2 using the family of groups \mathbb{Z}_q^n , where q is a prime power, then Val(n) ≥ n^{1+c} for some absolute c > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Proof idea.

Prior barriers reduce this to understanding if STPPs in \mathbb{Z}_n can yield $\omega = 2$. If $X \ge Y \implies Val(X) \ge Val(Y)$.

Theorem ([Pra24])

- If STPP constructions yield ω = 2 using the family of groups \mathbb{Z}_q^n , where *q* is a prime power, then Val(*n*) ≥ *n*^{1+c} for some absolute *c* > 0.
- ◇ If [CKSU05, Conjecture 4.7] is true, then $Val(n) \ge n^{4/3-o(1)}$.

Conjecture

 $Val(n) < n^{1+o(1)}.$

Proof idea.

Prior barriers reduce this to understanding if STPPs in \mathbb{Z}_n can yield $\omega = 2$. If $X \ge Y \implies Val(X) \ge Val(Y)$. So, $X_{\mathbb{Z}_n} \ge \sqcup_{i=1}^k M_N \implies Val(n) \ge kN^3$.

A relaxation: skew corner-free sets

• Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free

A relaxation: skew corner-free sets

- Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free
- ► The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates contains no skew corners: (x, y), (x, y + z), (x + z, w):

A relaxation: skew corner-free sets

- Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free
- ► The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates contains no skew corners: (x, y), (x, y + z), (x + z, w):

A relaxation: skew corner-free sets

- Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free
- ► The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates contains no skew corners: (x, y), (x, y + z), (x + z, w):

Conjecture

If $S \subseteq [n]^2$ is skew corner-free, then $|S| \le n^{1+o(1)}$.

A relaxation: skew corner-free sets

- Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free
- ► The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates contains no skew corners: (x, y), (x, y + z), (x + z, w):

Conjecture

If $S \subseteq [n]^2$ is skew corner-free, then $|S| \le n^{1+o(1)}$.

► Traditional corners: (x, y), (x, y + d), (x + d, y)

Combinatorial aspects of matrix multiplication

A relaxation: skew corner-free sets

- Let $X, Y, Z \subseteq \mathbb{Z}_n$ be trapezoid-free
- ► The projection of (x, y, z) ∈ X × Y × Z : x + y + z = 0 onto (x, y) coordinates contains no skew corners: (x, y), (x, y + z), (x + z, w):

Conjecture

If $S \subseteq [n]^2$ is skew corner-free, then $|S| \le n^{1+o(1)}$.

- Traditional corners: (x, y), (x, y + d), (x + d, y)
- ▶ Exist corner-free subsets of [*n*]² as big as *n*^{2−*o*(1)} [AS74]

Combinatorial aspects of matrix multiplication

Intermediate questions

Large skew-corner free sets exist!

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

Combinatorial aspects of matrix multiplication

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

Combinatorial aspects of matrix multiplication

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

If (x, y), $(x, y + z) \in A_{r,t}$, then $x \cdot z = 0$.

Combinatorial aspects of matrix multiplication

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

If (x, y), $(x, y + z) \in A_{r,t}$, then $x \cdot z = 0$. So there can be no point $(w, x + z) \notin A_{r,t}$ as $||y + x||^2 > r$. Hence $A_{r,t}$ contains no skew corners.

Combinatorial aspects of matrix multiplication

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

If (x, y), $(x, y + z) \in A_{r,t}$, then $x \cdot z = 0$. So there can be no point $(w, x + z) \notin A_{r,t}$ as $||y + x||^2 > r$. Hence $A_{r,t}$ contains no skew corners. By pigeonhole, can choose r, t so that $|A_{r,t}| \ge m^{2d}/(dm^2)^2$.

Theorem ([Bek24])

There exist skew corner-free subset of $[n]^2$ *of size* $n^{2-o(1)}$.

Proof sketch. Let $B = [m]^d$. Consider the set

$$A_{r,t} = \{(x,y) \in B^2 : ||x||^2 = ||y||^2 = r, x \cdot y = t\}.$$

If (x, y), $(x, y + z) \in A_{r,t}$, then $x \cdot z = 0$. So there can be no point $(w, x + z) \notin A_{r,t}$ as $||y + x||^2 > r$. Hence $A_{r,t}$ contains no skew corners. By pigeonhole, can choose r, t so that $|A_{r,t}| \ge m^{2d}/(dm^2)^2$. Embed into $[(2m)^d]$ via base 2m expansion.

Combinatorial aspects of matrix multiplication

Conclusion

• Know that
$$n \le Val(n) < o(n^{3/2})$$
. Is $Val(n) = n^{3/2 - o(1)}$?

Conclusion

- Know that $n \le Val(n) < o(n^{3/2})$. Is $Val(n) = n^{3/2 o(1)}$?
 - Would this imply that $\omega = 2$?

Conclusion

- Know that $n \le Val(n) < o(n^{3/2})$. Is $Val(n) = n^{3/2 o(1)}$?
 - Would this imply that $\omega = 2$?
- ► Is "the virus" the best SDPP construction? Nikodym sets?

Thank you!

Kevin Pratt Combinatorial aspects of matrix multiplication Courant Institute, NYU

Thank you! Questions?

Kevin Pratt Combinatorial aspects of matrix multiplication Courant Institute, NYU

References I

- Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou, *More asymmetry yields faster matrix multiplication*, arXiv preprint arXiv:2404.16349 (2024).
- Miklós Ajtai and Endre Szemerédi, *Sets of lattice points that form no squares*, Stud. Sci. Math. Hungar **9** (1974), no. 1975, 9–11.
- Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Eric Naslund, William F. Sawin, and Chris Umans, *On cap sets and the group-theoretic approach to matrix multiplication*, Discrete Anal. (2017), Paper No. 3, 1–27.
- Adrian Beker, *Improved bounds for skew corner-free sets*, arXiv preprint arXiv:2402.19169 (2024).

References II

- Henry Cohn, Robert Kleinberg, Balázs Szegedy, and Christopher Umans, *Group-theoretic algorithms for matrix multiplication*, Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS 2005), IEEE Computer Society, 2005, pp. 379–388.
- Henry Cohn and Christopher Umans, *A group-theoretic approach to fast matrix multiplication*, Proceedings of the 44th Annual Symposium on Foundations of Computer Science (FOCS 2003), IEEE Computer Society, 2003, pp. 438–449.
- Ben Green, 100 open problems, Available at https://people.maths.ox.ac.uk/greenbj/papers/open-problems.pdf.

References III

- Kevin Pratt, On generalized corners and matrix multiplication, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.
- Volker Strassen, *Gaussian elimination is not optimal*, Numerische mathematik **13** (1969), no. 4, 354–356.