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Multipoint evaluation

Naïve algorithm 
For i = 1 to N:   
 Evaluate f on  

Roughly  field operations in total  

When quadratic in the input size 

Can we do this faster ?  
In particular, is there an algorithm that runs in linear time in the input size ? 

          

αi

(Nmdm)
N = dm,  



Multipoint evaluation over infinite fields



Multipoint evaluation over infinite fields

Seeking a nearly linear time algorithm over finite fields is reasonable, since the 
output description is nearly linear in the input description 

 



Multipoint evaluation over infinite fields

Seeking a nearly linear time algorithm over finite fields is reasonable, since the 
output description is nearly linear in the input description 
No longer true over infinite fields!  

 



Multipoint evaluation over infinite fields

Seeking a nearly linear time algorithm over finite fields is reasonable, since the 
output description is nearly linear in the input description 
No longer true over infinite fields!  

Evaluate   at 1, 2, …., d  

 

f(x) = xd



Multipoint evaluation over infinite fields

Seeking a nearly linear time algorithm over finite fields is reasonable, since the 
output description is nearly linear in the input description 
No longer true over infinite fields!  

Evaluate   at 1, 2, …., d  

Total output size is at least quadratic in d 

 

f(x) = xd



Multipoint evaluation over infinite fields

Seeking a nearly linear time algorithm over finite fields is reasonable, since the 
output description is nearly linear in the input description 
No longer true over infinite fields!  

Evaluate   at 1, 2, …., d  

Total output size is at least quadratic in d 

Various versions: nearly linear time in the output size, input points with small 
absolute value, computing approximations of the evaluations, or count field 
operations only 

f(x) = xd



Approximate multipoint evaluation (rationals/reals/complexes)

Input 

• An m-variate polynomial  with degree at most (d-1) in each variable over rational 
numbers, as a list of coefficients 

• N points  , from the unit cube  

• Accuracy parameter t 

Output 

• Rational numbers  such that  

f

α1, α2, …,  αN ∈ Q𝐦

β1, β2, …, βN | f(αi) − βi | < 1/2t
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Why do we care ? 

• A very basic and natural algorithmic question in computational algebra 
• Many direct and natural applications – fast modular composition, univariate 

polynomial factorization over finite fields, generating irreducible 
polynomials, computing minimal polynomials, data structures for polynomial 
evaluation, …. 

  
• Current fastest algorithms for all these problems go via fast multipoint 

evaluation
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Multipoint evaluation: the univariate case

Input 

• A univariate polynomial  with degree (d-1) over a field K, as a list of 
coefficients 

• N points   

Output 

• Evaluation of  on  

Input is specified via  field elements

f

α1, α2, …,  αN ∈ 𝐊

f α1, α2, …,  αN

(N + d)
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Multipoint evaluation: the univariate case

For structured set of input points  
• when  are all roots of unity of order N  

•  an algorithm with   field operations using Fast Fourier 
Transform  

For an arbitrary set of input points  

• [Borodin-Moenck, 1974] An algorithm with   field 
operations 

• a very clever and neat application of FFT

α1, α2, …,  αN ∈ 𝐊

(N + d)1+o(1)

(N + d)1+o(1)



Multipoint evaluation: the univariate case

For an arbitrary set of input points  
• [Moroz, 2019] An nearly linear time algorithm for approximate 

univariate MME 
• Based on known algorithms for approximate FFT + beautiful geometric 

ideas
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Multipoint evaluation: the multivariate case

For structured set of input points  
• when  form a product set, i.e., 

, for   

• an easy nearly linear time algorithm – induction on the number of 
variables  

• uses the univariate case as the base case  

α1, α2, …,  αN ∈ 𝐊
{α1, α2, …,  αN} = S1 × S2 × ⋯ × Sm Si ⊆ 𝐊
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Multipoint evaluation: the multivariate case

For an arbitrary set of input points  
• no non-trivial algorithm known till relatively recently (even for the 

bivariate case)   
• Nusken-Ziegler designed a slightly faster (though far from linear time) 

algorithm in 2004 

• based on faster rectangular matrix multiplication  
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A nearly linear time algorithm for multivariate multipoint evaluation when 
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[Kedlaya, Umans, 2008] 
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The multivariate case: more recent progress

[Bjorklund, Kaski, Williams, 2019] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. |K| is small 
2. |K|-1 has small divisors   

Not a polynomial time algorithm, since the running time depends polynomially 
(and not polylogarithmically) on the field size 
Nevertheless, happens to be very useful for one of our results 
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Multivariate multipoint evaluation

In particular 
No nearly linear time algorithm for multivariate multipoint evaluation when 

• number of variables (m) is not less than , over any (sufficiently large) field 
     

This is the question that we study in our work and focus of rest of the talk.

do(1)
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[Bhargava, Ghosh, Guo, K., Umans, 2022] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. K is any finite field   
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Our results 

[Bhargava, Ghosh, K., Mohapatra, 2021] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. char(K) is less than  
2. K is of size at most exp(exp(exp(…exp(d))))                            (tower of fixed height) 

3. number of variables (m) is less than      

[Bhargava, Ghosh, Guo, K., Umans, 2022] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. K is any finite field 

2. number of variables (m) is less than      

                                         (degree d is asymptotically growing)                                                                  

do(1)

do(1)

do(1)



Our results 

[Ghosh, Harsha, Herdade, K, Saptharishi, 2023] 
A nearly linear time algorithm for approximate multivariate multipoint 
evaluation. 

• Running time is     

                                         (degree d is asymptotically growing)                                                                  

((Nm + dm)t)1+o(1)
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Multivariate multipoint evaluation

In particular 
No nearly linear time algorithm for multivariate multipoint evaluation when 

• number of variables (m) is not less than , over any (sufficiently large) field 
     

Our results 
Nearly linear time algorithm for multivariate multipoint evaluation over all finite fields, for 
growing d, and all m 
Nearly linear time algorithm for approximate multivariate multipoint evaluation over 
rationals, reals, complex numbers, for growing d, and all m 

do(1)



 
In summary 

 Field Size Characteristic Number of variables Algebraic vs non-
algebraic

Umans Finite char(K) <  m <       Algebraic

Kedlaya-Umans Finite All finite fields m <  Non-algebraic

Bhargava-Ghosh-K-
Mohapatra

      Not-too-large char(K) <         No constraint Algebraic 

Bhargava-Ghosh-
Guo-K-Umans

Finite All finite fields  No constraint Non-algebraic

Ghosh-Harsha-
Herdade-K-
Saptharishi

Infinite Rationals, Reals, 
Complex numbers

 No constraint Non-algebraic 
(approximate MME)

do(1)

do(1)

do(1)

do(1)
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Applications ? 

• Faster algorithms for problems like modular composition in newer regime of 
parameters via  known blackbox connections 

• Two non-blackbox applications from the algorithm over finite fields of small 
characteristic – algebraic data structures for polynomial evaluation, upper 
bounds on the rigidity of Vandermonde matrices
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Data structures for polynomial evaluation

• K – finite field of size q 

• Data: (univariate) polynomial f in K[x] of degree < d 

• Goal: to process and store this data in memory, so as to support fast 
polynomial evaluation queries  

• Resources 
• Space complexity: amount of memory needed for storage in the worst case  
• Query complexity: number of cells/bits in the memory needed to access queries in the 

worst case 
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Two simple constructions 

The first construction 

• Data:  

• Memory: store all the coefficients of  
• Query: on queried for any input a in K, read all the coefficients and do the 

evaluation  

• Space complexity:   bits                                            - optimal  

• Query complexity:  bits                                             - not great

f(x) = f0 + f1 ⋅ x + ⋯ + fd−1xd−1

f

(d ⋅ log q)
(d ⋅ log q)
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The second construction 

• Data:  

• Memory: store the value of  on all inputs in K 

• Query: on queried for any input a in K, read the appropriate memory 
locations 
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Two simple constructions 

The second construction 

• Data:  

• Memory: store the value of  on all inputs in K 

• Query: on queried for any input a in K, read the appropriate memory 
locations 

• Space complexity:  bits                                            - not great 

• Query complexity:  bits                                                 - optimal 

f(x) = f0 + f1 ⋅ x + ⋯ + fd−1xd−1

𝑓

(q ⋅ log q)
(log q)
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(logq)1+𝑜(1)
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A natural question

Is there a construction that achieves the best of both these worlds ?  

 Space complexity:  

 Query complexity:  

[Kedlaya-Umans, 2008] Sort of! 

 Space complexity:  

 Query complexity:  

So, this almost answers this question!

(d ⋅ logq)1+𝑜(1)

(logq)1+𝑜(1)

(d ⋅ logq)1+𝑜(1)

poly(log d) ⋅ (logq)1+𝑜(1)
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Algebraic vs non-algebraic

Algebraic algorithms: basic operations are arithmetic operations (+, *) over the 
underlying field 
Algebraic data structures: all the associated underlying algorithms are algebraic 

• naïve algorithm for multipoint evaluation, Fast Fourier Transform, both the simple data 
structures for polynomial evaluation are algebraic  

• algorithm of Kedlaya-Umans for multipoint evaluation is non-algebraic - uses things like 
bit operations, lifts the problem from the underlying field to over integers  

• algebraic algorithms might be more aesthetic, could be useful when working with 
arithmetic models of computation 
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Algebraic data structures for polynomial evaluation

Ideally, it would be nice to have algebraic data structures for polynomial 
evaluation, with Kedlaya-Umans like performance guarantees 
Is that even possible ?  

[Miltersen, 1995] 
If q > exp(d), then essentially no algebraic data structure for polynomial 
evaluation better than the trivial solution of storing all coefficients.  

Conjectured that the same should hold even for smaller fields. 



A corollary 

[Bhargava, Ghosh, K., Mohapatra, 2021] 
A data structure for polynomial evaluation with nearly linear space and 
sublinear query complexity, provided  
    1. char of the field is small  
    2. q < quasipoly(d) 

        (Input size: bits)  

           

d ⋅ logq 
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Matrix Rigidity

(r,s)-rigid matrices 
 V  L + S, where rank(L) < r, sparsity(S) < s 

[Valiant, 1977] 
Explicit construction of sufficiently rigid matrices implies new lower bounds in 
algebraic complexity  

Many popular candidates – Hadamard, Discrete Fourier Transform, 
Vandermonde matrices  
No sufficiently strong lower bounds

≠
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Non-rigidity of popular candidates

[Alman, Williams, 2016] 
Hadamard matrices are not sufficiently rigid  

[Dvir, Liu, 2019] 
Discrete Fourier Transform matrices are not sufficiently rigid 

And, some more – Alman, Dvir-Edelman, Kivva….  
Rigidity upper bounds for general Vandermonde matrices remains open



A corollary 

[Bhargava, Ghosh, K., Mohapatra, 2021] 
Vandermonde matrices are not sufficiently rigid, when 
    1. char of the field is small  
    2. q < quasipoly(dimension) 
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An outline of the algorithm

Theorem 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. char(K) is less than  
2. K is of size at most exp(exp(exp(…exp(d))))                            (tower of fixed height)
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Input 
• An m-variate polynomial  with degree at most (d-1) in each variable over a field K, 

as a list of coefficients 

• N points   

Two phases of the algorithm 
• Preprocessing phase: independent of the evaluation points  

• Local computation phase: depend on , and earlier computation 

𝑓

α1, α2, …,  αN ∈ 𝐊𝐦
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An outline of the algorithm

Preprocessing phase  

1. Construct a set  such that  

•  is not too large (comparable to the input size) 

• S is a product set  

• For every , there is a low degree curve through  which has large 
intersection with S 

2.    Evaluate f on all points of S

S ⊆ 𝐊m

S

α ∈ 𝐊m Cα   α
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Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with large 

intersection with S; each  is a low degree polynomial 

•  passes through , i.e. there exists , such that  

• let  be the restriction of the polynomial f on the curve 

  

• g is univariate of degree at most  

• if we can efficiently get our hands on g, we can set t = u, to get 

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α

 rα,i(y)
Cα(y) α u ∈ 𝐊 Cα(u) = α

g(t) = f(rα,1(y), rα,2(y),  …, rα,m(y))
Cα(y)

(deg(Cα) ⋅ dm)

f(α)
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Local computation  

• for each of the N input points, we only have sublinear [  time 

• from properties of S, we have that  intersects S at many points, and we have value of f at 
all points in S 

• let be such that  be in S 

• from the preprocessing phase, we have already computed 
 

• so, if , can recover the polynomial g via interpolation  

• once, we have g, can recover 

(N + dm)𝑜(1) ]

Cα

v ∈ 𝐊  Cα(v) = (rα,1(v), rα,2(v),  …, rα,m(v)) 

g(v) = f(rα,1(v), rα,2(v),  …, rα,m(v))

Cα  ∩ S > deg(g)
g(u) =  f(α)
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S

𝐂𝛂

𝛂 Want  
 |𝐂𝛂 ∩ 𝑺 | > 𝐝𝐞𝐠(𝐂𝛂) ⋅ 𝐝𝐦

•  

•  <  

•   

S < (pdm ⋅ log𝐩 𝐊 )
𝐦

 deg(Cα) log𝐩 𝐊

|Cα ∩ 𝑆 | > log𝐩 𝐊 ⋅ dm > deg(Cα) ⋅ dm
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The mysterious set S

• b in N be such that  

•   

• clearly,  

• S can be constructed ‘efficiently’ – linear time in its size  

• product set, so, f can be evaluated on S in nearly linear time 

• running time of the first phase -  ~  

• has the mysterious curve property needed for subsequent step

pb−1 ≤ dm ⋅ logp  𝐊 ≤ pb 

S = 𝐅m
pb

S < (pdm ⋅ log𝒑 𝑲 )
𝐦

 nearly linear in (dm + |S | ) (pdm ⋅ log𝒑 𝑲 )
𝐦
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• running time of the first phase – nearly linear in  ~  

• N iterations of univariate polynomial interpolation for degree  + finding 
the curves at each input  

•  time  

• total running time :   

• for small p, m, , this is nearly linear time in  
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A few more ideas

• Well…what about large m, large fields ?  

• the bottleneck is the size of S 

• if we could work with a smaller set S, then….. 

• to continue the local decoding step, will need to ensure that we have sufficient 
information for univariate interpolation along the curve at each point 

• here, we work with a smaller set S 

• leads to reduced intersection between the curves and the set S 

• to compensate, need stronger preprocessing phase, and a more complicated local 
computation step 
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• evaluate f, and all its partial derivatives of order at most m, on all points of S 

• this additional information lets us proceed with a smaller set S  

(  

• instead of constructing univariate polynomials from just evaluations, we now 
construct them from their evaluations and the evaluations of their derivatives  

• running time -  
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A few more ideas

Dealing with large fields 

•  the degree of the curve through an input point depends on the degree of the field 
extension that the point lies in 

• on each , there are many points  that lie in much lower degree extensions 

• so, the value of f is easier to  decode on such points  

• instead of computing the restriction of f on , by looking at the values of f 
on we first compute f on easier points of  

• then, use this additional info, together with values of f on S to do 
interpolation

Cα β

Cα
Cα ∩ S,   Cα
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The final inaccurate picture 
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• First compute f on curves through simpler 
points  using the previous algorithm 

• Then, use the values of f on S, and curves 
through  to compute f on  

 β,  γ

β,  γ Cα
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Multipoint evaluation over all finite fields 

• two different algorithms  

• both rely on ideas from the previous algorithm + approach of Kedlaya-Umans + 
some more ideas (primes in an AP, algorithm of BKW2019)  

• one completely elementary, but slightly technical to describe, requires the field to 
be not-too-large 

• one simpler and shorter to describe, but not entirely elementary 

• crucially uses a result of Bombieri-Vinogradov about the density of primes in an 
arithmetic progression  

• essentially, both improve some of the bottlenecks in Kedlaya-Umans using ideas 
from the small characteristic case and BKW19 in slightly different ways



Open Questions

• An algebraic algorithm over finite fields ?  

• An algorithm (or an algebraic circuit) over infinite fields (complex numbers) ?  

• More applications ?  

• What about faster algorithms for other related problems ? e.g. multivariate 
interpolation ?  

• What about the case of constant d ? e.g. multilinear polynomials ?



Thank You!


