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Problem Description

Support the operations of a binary search tree, including:

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum()
• Maximum()

Updates:
• Insert(k)
• Delete(ptr)
• ChangeKey(ptr, k’)
• Split(r)
• Merge(T1, T2)

We call this the sorted dictionary problem.

The standard dictionary 
problem need not maintain 
order.

Solvable in 𝑂(1) time per operation 
using hashing.



Existing Sorted Dictionaries

• AVL trees
• Red-black trees
• Splay trees

𝑂(log 𝑛) time per operation, all 
balanced binary search trees

Supports stronger theorems (complexities are amortized):
Theorem Name Access Time of Element i Explanation

Static Optimality 𝑂 log
𝑚
𝑞(𝑖)

Element i is accessed 𝑞(𝑖) times in an access sequence of 
length 𝑚.

Working Set 𝑂 log(𝑡 𝑖 + 1) 𝑡(𝑖) is the number of items accessed since 𝑖 was last 
accessed.

Dynamic Finger 𝑂 log( 𝑗 − 𝑖 + 1) 𝑗 was the last item accessed.

• AVL trees
• Red-black trees
• Splay trees



Dynamic Optimality Conjecture
Conjectures that splay trees are 𝑂(1)-competitive with any other 
binary search tree on any sufficiently long access sequence.

Paper Result Citation

Self-adjusting binary search trees Splay tree paper Sleator & Tarjan, J. ACM ‘85

Lower bounds for accessing binary 
search trees with rotations

Gives lower bounds on required complexity of 
binary search tree access sequences.

Wilbur, SICOMP ‘89

On the dynamic finger conjecture for 
splay trees (parts I and II)

Proves the dynamic finger property for splay 
trees.

Cole et al., SICOMP ‘00 
(Part I)
Cole, SICOMP ‘00 (Part II)

Alternatives to splay trees with 
𝑂(log 𝑛) worst-case access times

Generalizes the working set and dynamic finger 
properties to the unified bound.

Iacono, SODA ‘01

Dynamic optimality-almost Gives an 𝑂(log log 𝑛)-competitive BST. Demaine et al., SICOMP ‘07

The geometry of binary search trees Gives a geometric view of BST access and 
proposes a conjectured-optimal “greedy BST”.

Demaine et al., SODA ‘09

Has received vast attention:



Dynamic Optimality Conjecture
Conjectures that splay trees are 𝑂(1)-competitive with any other 
binary search tree on any sufficiently long access sequence.

Paper Citation

A unified access bound on comparison-based dynamic dictionaries Bădoiu et al., Theoretical Computer 
Science ‘07

Pattern-avoiding access in binary search trees Chalermsook et al., FOCS ‘15

Weighted dynamic finger in binary search trees Iacono & Langerman, SODA ‘16

A new path from splay to dynamic optimality Levy & Tarjan, SODA ‘19

Smooth heaps and a dual view of self-adjusting data structures Kozma & Saranurak, SICOMP ‘19

Competitive online search trees on trees Bose et al., SODA ‘20

Has received vast attention:



Dynamic Optimality Conjecture

Key Questions:
1. Why consider access instead of insert and query?
2. Why only consider binary search trees?

Conjectures that splay trees are 𝑂(1)-competitive with any other 
binary search tree on any sufficiently long access sequence.



Motivation
Fibonacci heaps and its derivatives offer improved runtimes if we 
restrict the operation set.

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum(): 𝑂(log 𝑛)
• Maximum(): 𝑂(log 𝑛)

Updates:
• Insert(k): 𝑂(1)
• Delete(ptr): 𝑂(log 𝑛)
• ChangeKey(ptr, k’): 𝑂(1)
• Split(r)
• Merge(T1, T2): 𝑂(1)



Motivation
Can efficient priority queues be generalized to support queries for any 
rank?

Such a data structure could provide a sorted dictionary with superior 
insertion times to a binary search tree.



Intuition
Avoid sorting on insert.

Progressively sort as queries are answered.



Related Work – Deferred Data Structures

Paper Result Citation

Deferred data 
structuring

Shows 𝑞 queries on a static set of 𝑛 unsorted elements can be 
answered in 𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛) time and gives a matching lower 
bound.

Karp, Motwani, & 
Raghavan, SICOMP ‘88

Dynamic deferred 
data structuring

Shows 𝑞′ queries, insertions, and deletions can be answered on 
an initial set of 𝑛! unsorted elements in 𝑂(𝑛! log 𝑞" + 𝑞" log 𝑛!). 

Ching, Melhorn, & Smid, 
Info. Proc. Letters ‘90



Related Work – Online Dynamic Multiple 
Selection
Given an unsorted array 𝐴, select elements of ranks 𝑟!, 𝑟", … , 𝑟#.
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Related Work – Online Dynamic Multiple 
Selection
Given an unsorted array 𝐴, select elements of ranks 𝑟!, 𝑟", … , 𝑟#.

• Let Δ$ be the set of elements between 𝑟$%! and 𝑟$.

• Define 𝐵 = ∑$ Δ$ log"
&
'!

.

• The complexity of multiple selection is Θ(𝐵 + 𝑛).



Related Work – Online Dynamic Multiple 
Selection

Paper Result Citation

Theory and implementation 
of online multiselection
algorithms

Multiple selection where the ranks 𝑟#, 𝑟$, … , 𝑟% are given 
online and in any order. 𝑂(𝐵 + 𝑛) time.

Barbay et al., ESA ‘13

Dynamic online 
multiselection in internal 
and external memory

Online dynamic multiple selection in 𝑂(𝐵 + 𝑛 +
𝑞" log 𝑛) time, where it is assumed each insertion is 
preceded by a search for the inserted element and again 
𝑞′ is the number of search, insert, and delete operations.

Barbay et al., Journal of 
Discrete Algorithms, ‘16



Shortfalls of Related Work

Paper Result Citation

Deferred data 
structuring

Shows 𝑞 queries on a static set of 𝑛 unsorted elements can be 
answered in 𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛) time and gives a matching 
lower bound.

Karp, Motwani, & 
Raghavan, SICOMP ‘88

Dynamic deferred 
data structuring

Shows 𝑞′ queries, insertions, and deletions can be answered on 
an initial set of 𝑛! unsorted elements in 𝑂(𝑛! log 𝑞" + 𝑞" log 𝑛!). 

Ching, Melhorn, & Smid, 
Info. Proc. Letters ‘90

Theory and 
implementation of 
online multiselection
algorithms

Multiple selection where the ranks 𝑟#, 𝑟$, … , 𝑟% are given online 
and in any order. 𝑂(𝐵 + 𝑛) time.

Barbay et al., ESA ‘13

Dynamic online 
multiselection in 
internal and external 
memory

Online dynamic multiple selection in 𝑂(𝐵 + 𝑛 + 𝑞" log 𝑛) time, 
where it is assumed each insertion is preceded by a search for 
the inserted element and again 𝑞′ is the number of search, 
insert, and delete operations.

Barbay et al., Journal of 
Discrete Algorithms, ‘16

1: Weak model; query ranks are not considered. 2: Weak model; insert and query operations are coupled.
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Our Model
Partition elements into a set of gaps Δ$ based on rank.

Inserted elements are placed into a gap that respects the partition.
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Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new 
gaps at a rank 𝑟 associated with the query operation.



How to Choose Rank 𝑟?

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum()
• Maximum()

𝑟 is the rank of the queried element, 𝑘.

𝑟 is the rank of the element returned.

Updates:
• Split(r) 𝑟 is the splitting rank.



Intuition
Multiple selection fits directly into the framework.



Intuition
Binary search trees correspond to each element having its own gap.



Intuition
Priority queues correspond to a single gap Δ!.

Extract-minimum queries work as follows.



Intuition
Priority queues correspond to a single gap Δ!.

We first perform a minimum query with rank 𝑟 = 1.



Intuition
Priority queues correspond to a single gap Δ!.

We first perform a minimum query with rank 𝑟 = 1.



Intuition
Priority queues correspond to a single gap Δ!.

This splits existing gap Δ! into two new gaps Δ! and Δ", where Δ! = 1.



Intuition
Priority queues correspond to a single gap Δ!.

The minimum, now in gap Δ!, is then removed.



Intuition
Priority queues correspond to a single gap Δ!.



Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• 𝐵 characterizes the amount of information (work) present in the 
current gap partition.

𝐵 = Θ(𝑛 log 𝑛)
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Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• 𝐵 characterizes the amount of information (work) present in the 
current gap partition.

𝐵 = 𝜔(1) and 𝐵 = 𝑂(𝑛 log 𝑞)



Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Goal: Achieve 𝑂(𝐵 + 𝑛) time on an operation sequence resulting in 
gaps Δ$ .
• Multiple selection implies this is optimal.



Technical Overview

𝐵 before: 3 log$
#&
'

+ 9 log$
#&
(

+ 3 log$
#&
'

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.
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Technical Overview

𝐵 after:    3 log$
#&
'

+ 9 log$
#&
(

+ 4 log$
#&
)

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.



Technical Overview
• Store the set of gaps Δ$ in a biased search tree where gap Δ$ gets 

weight |Δ$|.

• Access to gap Δ$ takes time O log &
'!

.



Technical Overview

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 2: The change in 𝐵 due to splitting Δ$ into gaps of size 𝑐𝑥 and 
𝑥 for 𝑐 ≥ 1 is Ω(𝑥 log 𝑐).

Proof: log ()! *
* = Ω(𝑥 log 𝑐).



Priority Queue Complexities

• Only one gap Δ!, so insertion takes O log &
'"

= 𝑂(1) time.



Priority Queue Complexities

• Only one gap Δ!, so insertion takes O log &
'"

= 𝑂(1) time.

• Removal of the minimum has 𝑥 = 1, 𝑐 = Θ(𝑛), and so should take 
𝑂 𝑥 log 𝑐 = 𝑂(log 𝑛) time.



Technical Overview

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 2: The change in 𝐵 due to splitting Δ$ into gaps of size 𝑐𝑥 and 
𝑥 for 𝑐 ≥ 1 is Ω(𝑥 log 𝑐).

Proof: log ()! *
* = Ω(𝑥 log 𝑐).



Technical Overview
• Supporting the ability to split a gap Δ$ into gaps of size 𝑐𝑥 and 𝑥 for 
𝑐 ≥ 1 in O(𝑥 log 𝑐) time is the main technical challenge.
• To do so we add 𝑂(log log 𝑛) to insertion time.



High-Level Results
• Theorem 1: Over a sequence of 𝑛 insertions and 𝑞 unique queries, 

performance is 𝑂(𝐵 +min(𝑛 log log 𝑛, 𝑛 log 𝑞)).
• Theorem 2: Ω(𝐵 + 𝑛) is a lower bound.
• Theorem 3: Only 𝑂(min(𝑞, 𝑛)) pointers are required.
• Theorem 4: By using a splay tree as the biased search tree over the 

set of gaps Δ$ , we can achieve its efficient access theorems 
automatically.



Specific Results

• Insert(k) where k ∈ Δ$ in O log &
'!

+ log log 𝑛 .

• Query in gap Δ$ resulting in gaps of size 𝑥 and 𝑐𝑥 (𝑐 ≥ 1) in 
𝑂(𝑥 log 𝑐 + log 𝑛).
• Delete(ptr) in 𝑂(log 𝑛).
• ChangeKey(ptr, k’) in 𝑂(log log 𝑛)*.
• Construction(S) in 𝑂(𝑛).
• Split(r) in time as in Query.
• Merge(T1, T2) where T1 ≤ T2 in 𝑂(log 𝑛).

* =

Worst 
Case

Amortized



Applications
• BST replacement that serves 𝑛 insertions and 𝑞 queries in 
𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛).
• Can serve 𝑛 insertions and 𝑞/𝑘 queries for 𝑘 consecutive keys in 
𝑂 𝑛 log #

+
+ 𝑞 log 𝑛 + 𝑛 log log 𝑛 .



Applications
• BST replacement that serves 𝑛 insertions and 𝑞 queries in 
𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛).
• Can serve 𝑛 insertions and 𝑞/𝑘 queries for 𝑘 consecutive keys in 
𝑂 𝑛 log #

+
+ 𝑞 log 𝑛 + 𝑛 log log 𝑛 .

• PQ or double-ended PQ with 𝑂(log log 𝑛) time insert and 
decrease-key that supports a general operation set.
• Data structure for online dynamic multiple selection.
• Incremental quicksort.
• Return the 𝑞 smallest elements in sorted order in 𝑂(𝑛 + 𝑞 log 𝑛).
• Or sort any part of the array in optimal 𝑂(𝐵 + 𝑛).



Thanks!

Questions?


