
Lazy Search Trees
Bryce Sandlund – University of Waterloo
Sebastian Wild – University of Liverpool

Problem Description

Support the operations of a binary search tree, including:

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum()
• Maximum()

Updates:
• Insert(k)
• Delete(ptr)
• ChangeKey(ptr, k’)
• Split(r)
• Merge(T1, T2)

We call this the sorted dictionary problem.

The standard dictionary
problem need not maintain
order.

Solvable in 𝑂(1) time per operation
using hashing.

Existing Sorted Dictionaries

• AVL trees
• Red-black trees
• Splay trees

𝑂(log 𝑛) time per operation, all
balanced binary search trees

Supports stronger theorems (complexities are amortized):
Theorem Name Access Time of Element i Explanation

Static Optimality 𝑂 log
𝑚
𝑞(𝑖)

Element i is accessed 𝑞(𝑖) times in an access sequence of
length 𝑚.

Working Set 𝑂 log(𝑡 𝑖 + 1) 𝑡(𝑖) is the number of items accessed since 𝑖 was last
accessed.

Dynamic Finger 𝑂 log(𝑗 − 𝑖 + 1) 𝑗 was the last item accessed.

• AVL trees
• Red-black trees
• Splay trees

Dynamic Optimality Conjecture
Conjectures that splay trees are 𝑂(1)-competitive with any other
binary search tree on any sufficiently long access sequence.

Paper Result Citation

Self-adjusting binary search trees Splay tree paper Sleator & Tarjan, J. ACM ‘85

Lower bounds for accessing binary
search trees with rotations

Gives lower bounds on required complexity of
binary search tree access sequences.

Wilbur, SICOMP ‘89

On the dynamic finger conjecture for
splay trees (parts I and II)

Proves the dynamic finger property for splay
trees.

Cole et al., SICOMP ‘00
(Part I)
Cole, SICOMP ‘00 (Part II)

Alternatives to splay trees with
𝑂(log 𝑛) worst-case access times

Generalizes the working set and dynamic finger
properties to the unified bound.

Iacono, SODA ‘01

Dynamic optimality-almost Gives an 𝑂(log log 𝑛)-competitive BST. Demaine et al., SICOMP ‘07

The geometry of binary search trees Gives a geometric view of BST access and
proposes a conjectured-optimal “greedy BST”.

Demaine et al., SODA ‘09

Has received vast attention:

Dynamic Optimality Conjecture
Conjectures that splay trees are 𝑂(1)-competitive with any other
binary search tree on any sufficiently long access sequence.

Paper Citation

A unified access bound on comparison-based dynamic dictionaries Bădoiu et al., Theoretical Computer
Science ‘07

Pattern-avoiding access in binary search trees Chalermsook et al., FOCS ‘15

Weighted dynamic finger in binary search trees Iacono & Langerman, SODA ‘16

A new path from splay to dynamic optimality Levy & Tarjan, SODA ‘19

Smooth heaps and a dual view of self-adjusting data structures Kozma & Saranurak, SICOMP ‘19

Competitive online search trees on trees Bose et al., SODA ‘20

Has received vast attention:

Dynamic Optimality Conjecture

Key Questions:
1. Why consider access instead of insert and query?
2. Why only consider binary search trees?

Conjectures that splay trees are 𝑂(1)-competitive with any other
binary search tree on any sufficiently long access sequence.

Motivation
Fibonacci heaps and its derivatives offer improved runtimes if we
restrict the operation set.

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum(): 𝑂(log 𝑛)
• Maximum(): 𝑂(log 𝑛)

Updates:
• Insert(k): 𝑂(1)
• Delete(ptr): 𝑂(log 𝑛)
• ChangeKey(ptr, k’): 𝑂(1)
• Split(r)
• Merge(T1, T2): 𝑂(1)

Motivation
Can efficient priority queues be generalized to support queries for any
rank?

Such a data structure could provide a sorted dictionary with superior
insertion times to a binary search tree.

Intuition
Avoid sorting on insert.

Progressively sort as queries are answered.

Related Work – Deferred Data Structures

Paper Result Citation

Deferred data
structuring

Shows 𝑞 queries on a static set of 𝑛 unsorted elements can be
answered in 𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛) time and gives a matching lower
bound.

Karp, Motwani, &
Raghavan, SICOMP ‘88

Dynamic deferred
data structuring

Shows 𝑞′ queries, insertions, and deletions can be answered on
an initial set of 𝑛! unsorted elements in 𝑂(𝑛! log 𝑞" + 𝑞" log 𝑛!).

Ching, Melhorn, & Smid,
Info. Proc. Letters ‘90

Related Work – Online Dynamic Multiple
Selection
Given an unsorted array 𝐴, select elements of ranks 𝑟!, 𝑟", … , 𝑟#.

Related Work – Online Dynamic Multiple
Selection
Given an unsorted array 𝐴, select elements of ranks 𝑟!, 𝑟", … , 𝑟#.

Related Work – Online Dynamic Multiple
Selection
Given an unsorted array 𝐴, select elements of ranks 𝑟!, 𝑟", … , 𝑟#.

• Let Δ$ be the set of elements between 𝑟$%! and 𝑟$.

• Define 𝐵 = ∑$ Δ$ log"
&
'!

.

• The complexity of multiple selection is Θ(𝐵 + 𝑛).

Related Work – Online Dynamic Multiple
Selection

Paper Result Citation

Theory and implementation
of online multiselection
algorithms

Multiple selection where the ranks 𝑟#, 𝑟$, … , 𝑟% are given
online and in any order. 𝑂(𝐵 + 𝑛) time.

Barbay et al., ESA ‘13

Dynamic online
multiselection in internal
and external memory

Online dynamic multiple selection in 𝑂(𝐵 + 𝑛 +
𝑞" log 𝑛) time, where it is assumed each insertion is
preceded by a search for the inserted element and again
𝑞′ is the number of search, insert, and delete operations.

Barbay et al., Journal of
Discrete Algorithms, ‘16

Shortfalls of Related Work

Paper Result Citation

Deferred data
structuring

Shows 𝑞 queries on a static set of 𝑛 unsorted elements can be
answered in 𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛) time and gives a matching
lower bound.

Karp, Motwani, &
Raghavan, SICOMP ‘88

Dynamic deferred
data structuring

Shows 𝑞′ queries, insertions, and deletions can be answered on
an initial set of 𝑛! unsorted elements in 𝑂(𝑛! log 𝑞" + 𝑞" log 𝑛!).

Ching, Melhorn, & Smid,
Info. Proc. Letters ‘90

Theory and
implementation of
online multiselection
algorithms

Multiple selection where the ranks 𝑟#, 𝑟$, … , 𝑟% are given online
and in any order. 𝑂(𝐵 + 𝑛) time.

Barbay et al., ESA ‘13

Dynamic online
multiselection in
internal and external
memory

Online dynamic multiple selection in 𝑂(𝐵 + 𝑛 + 𝑞" log 𝑛) time,
where it is assumed each insertion is preceded by a search for
the inserted element and again 𝑞′ is the number of search,
insert, and delete operations.

Barbay et al., Journal of
Discrete Algorithms, ‘16

1: Weak model; query ranks are not considered. 2: Weak model; insert and query operations are coupled.

1

2

1

2

De
fe

rr
ed

 D
at

a
St

ru
ct

ur
es

M
ul

tip
le

 S
el

ec
tio

n

Our Model
Partition elements into a set of gaps Δ$ based on rank.

Inserted elements are placed into a gap that respects the partition.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

Inserted elements are placed into a gap that respects the partition.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

Inserted elements are placed into a gap that respects the partition.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

Inserted elements are placed into a gap that respects the partition.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new
gaps at a rank 𝑟 associated with the query operation.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new
gaps at a rank 𝑟 associated with the query operation.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new
gaps at a rank 𝑟 associated with the query operation.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new
gaps at a rank 𝑟 associated with the query operation.

Our Model
Partition elements into a set of gaps Δ$ based on rank.

A query falls into a particular gap and splits the gap into two new
gaps at a rank 𝑟 associated with the query operation.

How to Choose Rank 𝑟?

Queries:
• Rank(k)
• Select(r)
• Membership(k)
• Predecessor(k)
• Successor(k)
• Minimum()
• Maximum()

𝑟 is the rank of the queried element, 𝑘.

𝑟 is the rank of the element returned.

Updates:
• Split(r) 𝑟 is the splitting rank.

Intuition
Multiple selection fits directly into the framework.

Intuition
Binary search trees correspond to each element having its own gap.

Intuition
Priority queues correspond to a single gap Δ!.

Extract-minimum queries work as follows.

Intuition
Priority queues correspond to a single gap Δ!.

We first perform a minimum query with rank 𝑟 = 1.

Intuition
Priority queues correspond to a single gap Δ!.

We first perform a minimum query with rank 𝑟 = 1.

Intuition
Priority queues correspond to a single gap Δ!.

This splits existing gap Δ! into two new gaps Δ! and Δ", where Δ! = 1.

Intuition
Priority queues correspond to a single gap Δ!.

The minimum, now in gap Δ!, is then removed.

Intuition
Priority queues correspond to a single gap Δ!.

Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• 𝐵 characterizes the amount of information (work) present in the
current gap partition.

𝐵 = Θ(𝑛 log 𝑛)

Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• 𝐵 characterizes the amount of information (work) present in the
current gap partition.

𝐵 = 0

Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• 𝐵 characterizes the amount of information (work) present in the
current gap partition.

𝐵 = 𝜔(1) and 𝐵 = 𝑂(𝑛 log 𝑞)

Complexity Goal

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Goal: Achieve 𝑂(𝐵 + 𝑛) time on an operation sequence resulting in
gaps Δ$.
• Multiple selection implies this is optimal.

Technical Overview

𝐵 before: 3 log$
#&
'

+ 9 log$
#&
(

+ 3 log$
#&
'

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.

Technical Overview

𝐵 before: 3 log$
#&
'

+ 9 log$
#&
(

+ 3 log$
#&
'

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.

Technical Overview

𝐵 before: 3 log$
#&
'

+ 9 log$
#&
(

+ 3 log$
#&
'

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.

Technical Overview

𝐵 after: 3 log$
#&
'

+ 9 log$
#&
(

+ 4 log$
#&
)

+ log$ 16

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 1: The change in 𝐵 due to insertion into Δ$ is Ω log &
'!

.

Technical Overview
• Store the set of gaps Δ$ in a biased search tree where gap Δ$ gets

weight |Δ$|.

• Access to gap Δ$ takes time O log &
'!

.

Technical Overview

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 2: The change in 𝐵 due to splitting Δ$ into gaps of size 𝑐𝑥 and
𝑥 for 𝑐 ≥ 1 is Ω(𝑥 log 𝑐).

Proof: log ()! *
* = Ω(𝑥 log 𝑐).

Priority Queue Complexities

• Only one gap Δ!, so insertion takes O log &
'"

= 𝑂(1) time.

Priority Queue Complexities

• Only one gap Δ!, so insertion takes O log &
'"

= 𝑂(1) time.

• Removal of the minimum has 𝑥 = 1, 𝑐 = Θ(𝑛), and so should take
𝑂 𝑥 log 𝑐 = 𝑂(log 𝑛) time.

Technical Overview

• Recall 𝐵 = ∑$ Δ$ log"
&
'!

.

• Lemma 2: The change in 𝐵 due to splitting Δ$ into gaps of size 𝑐𝑥 and
𝑥 for 𝑐 ≥ 1 is Ω(𝑥 log 𝑐).

Proof: log ()! *
* = Ω(𝑥 log 𝑐).

Technical Overview
• Supporting the ability to split a gap Δ$ into gaps of size 𝑐𝑥 and 𝑥 for
𝑐 ≥ 1 in O(𝑥 log 𝑐) time is the main technical challenge.
• To do so we add 𝑂(log log 𝑛) to insertion time.

High-Level Results
• Theorem 1: Over a sequence of 𝑛 insertions and 𝑞 unique queries,

performance is 𝑂(𝐵 +min(𝑛 log log 𝑛, 𝑛 log 𝑞)).
• Theorem 2: Ω(𝐵 + 𝑛) is a lower bound.
• Theorem 3: Only 𝑂(min(𝑞, 𝑛)) pointers are required.
• Theorem 4: By using a splay tree as the biased search tree over the

set of gaps Δ$, we can achieve its efficient access theorems
automatically.

Specific Results

• Insert(k) where k ∈ Δ$ in O log &
'!

+ log log 𝑛 .

• Query in gap Δ$ resulting in gaps of size 𝑥 and 𝑐𝑥 (𝑐 ≥ 1) in
𝑂(𝑥 log 𝑐 + log 𝑛).
• Delete(ptr) in 𝑂(log 𝑛).
• ChangeKey(ptr, k’) in 𝑂(log log 𝑛)*.
• Construction(S) in 𝑂(𝑛).
• Split(r) in time as in Query.
• Merge(T1, T2) where T1 ≤ T2 in 𝑂(log 𝑛).

* =

Worst
Case

Amortized

Applications
• BST replacement that serves 𝑛 insertions and 𝑞 queries in
𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛).
• Can serve 𝑛 insertions and 𝑞/𝑘 queries for 𝑘 consecutive keys in
𝑂 𝑛 log #

+
+ 𝑞 log 𝑛 + 𝑛 log log 𝑛 .

Applications
• BST replacement that serves 𝑛 insertions and 𝑞 queries in
𝑂(𝑛 log 𝑞 + 𝑞 log 𝑛).
• Can serve 𝑛 insertions and 𝑞/𝑘 queries for 𝑘 consecutive keys in
𝑂 𝑛 log #

+
+ 𝑞 log 𝑛 + 𝑛 log log 𝑛 .

• PQ or double-ended PQ with 𝑂(log log 𝑛) time insert and
decrease-key that supports a general operation set.
• Data structure for online dynamic multiple selection.
• Incremental quicksort.
• Return the 𝑞 smallest elements in sorted order in 𝑂(𝑛 + 𝑞 log 𝑛).
• Or sort any part of the array in optimal 𝑂(𝐵 + 𝑛).

Thanks!

Questions?

