Online Algorithms for Spectral Sparsification of Hypergraphs

Kam Chuen (Alex) Tung
PhD Candidate, University of Waterloo
15 January 2025 @ U Waterloo

Joint work with Tasuku Soma (ISM Japan) and Yuichi Yoshida (NII Japan)
Slides mostly based on Soma and Yoshida

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

Graph Sparsification

- Let G = (V, E) be a graph
- Objective: reduce graph size to speed up downstream algorithms
- What to preserve?
 - Shortest paths -> Spanners [Peleg, Schäffer '89]
 - Cuts -> Cut sparsifiers [Karger '93], [Benczur, Karger '96]
 - Spectrum -> Spectral sparsifiers [Spielman, Teng '11]
 - Many other possibilities...

Cut Sparsification of Graphs

- G = (V, E, w) weighted graph
- $\tilde{G} = (V, E, \tilde{w})$ reweighted subgraph, edge weight $\tilde{w}_e \geq 0$

 \tilde{G} is an ϵ -cut sparsifier of G if:

- $(1 \epsilon)cut_G(S) \le cut_{\tilde{G}}(S) \le (1 + \epsilon)cut_G(S)$ for all $S \subseteq V$
- The number of edges (with positive \widetilde{w}_e) is small

Spectral Sparsification of Graphs [Spielman, Teng'11]

- L: Laplacian of G, \tilde{L} : Laplacian of \tilde{G}
- Quadratic form: $x^T L x = \sum_{uv \in E} w_{uv} (x(u) x(v))^2$
- Want $(1 \epsilon)x^T L x \le x^T \tilde{L} x \le (1 + \epsilon)x^T L x$ for all $x \in \mathbb{R}^V$
- Spectral sparsifier is cut sparsifier: when $x = \chi_S$, $x^T L x = cut_G(S)$

Spectral Sparsification of Graphs: Methods

- Decomposition-based: $O\left(\frac{n \text{ polylog } n}{\epsilon^2}\right)$ edges [Spielman, Teng '11]
- Sampling-based: $O\left(\frac{n\log n}{\epsilon^2}\right)$ edges [Spielman, Srivastava '08]
- Potential function-based: $O\left(\frac{n}{\epsilon^2}\right)$ edges [Batson, Spielman, Srivastava '09]

 Applications: Laplacian solvers, flow/cut algorithms, clustering, sampling spanning trees...

Spectral Sparsification of Hypergraphs

• Hypergraph cut: $cut_H(S) := \sum_{0 < |e \cap S| < |e|} w_e$

• Hypergraph energy/"quadratic form" [Soma, Yoshida '19]

$$Q_H(x) := \sum_{e \in E} w_e \cdot \max_{u,v \in e} (x(u) - x(v))^2$$

• Want $(1 - \epsilon)Q_H(x) \le Q_{\widetilde{H}}(x) \le (1 + \epsilon)Q_H(x)$ for all $x \in \mathbb{R}^V$

• Spectral sparsifier is cut sparsifier: when $x = \chi_S$, $Q_H(x) = cut_H(S)$

Hypergraph Sparsification: Results

Reference	#hyperedges	Cut/ Spectral?	Method
[Kogan, Krauthgamer '15]	$O\left(\frac{n(r + \log n)}{\epsilon^2}\right)$	Cut	Sampling
[Soma, Yoshida '19]	$O\left(\frac{n^3\log n}{\epsilon^2}\right)$	Spectral	Sampling
[Bansal, Svensson, Trevisan '19]	$O\left(\frac{nr^3\log n}{\epsilon^2}\right)$	Spectral	Sampling
[Chen, Khanna, Nagda '20]	$O\left(\frac{n\log n}{\epsilon^2}\right)$	Cut	Sampling
[Kapralov, Krauthgamer, Tardos, Yoshida '21]	$\tilde{O}\left(\frac{nr}{\epsilon^{O(1)}}\right)$	Spectral	Decomposition
[Kapralov, Krauthgamer, Tardos, Yoshida '22]	$O\left(\frac{n\log^3 n}{\epsilon^4}\right)$	Spectral	Sampling
[Lee '23, Jambulapati, Liu, Sidford '23]	$O\left(\frac{n\log n\log r}{\epsilon^2}\right)$	Spectral	Sampling

Memory Issue

- All these algorithms are offline
- For hypergraphs, m := |E| can be as large as 2^n
- May be expensive simply to store the entire hypergraph!

GOAL: Sparsifier without using $\Omega(m)$ memory

Online Setting

- Hyperedges e_i (weight w_i) arrive one by one
- Upon arrival, the algorithm decides **immediately** whether to include e_i , and the new weight \widetilde{w}_i if applicable

• Task: find a spectral sparsifier using poly(n) working memory

Our Result

<u>Definition</u> \widetilde{H} : (ϵ, δ) -spectral sparsifier of H iff

$$(1 - \epsilon)Q_H(x) - \delta \|x\|_2^2 \le Q_{\widetilde{H}}(x) \le (1 + \epsilon)Q_H(x) + \delta \|x\|_2^2$$

Theorem [Soma, T., Yoshida '24] There is an online algorithm that computes an (ϵ, δ) -spectral sparsifier with $O\left(\epsilon^{-2} n \log n \log r \log \frac{\epsilon W}{\delta n}\right)$ hyperedges w.h.p., using $O(n^2)$ space. (Here $W \coloneqq \max_e w_e$)

- r-uniform and unweighted: $O(\epsilon^{-2}nr\log^2 n\log r)$ hyperedges
- Sampling-based algorithm

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

Effective Resistance Sampling [Spielman, Srivastava '08]

- Sample graph edge e = uv proportional to effective resistance r_e
- $r_e := ||L^{-1/2}(\chi_u \chi_v)||^2 = (\chi_u \chi_v)^T L^{-1}(\chi_u \chi_v)$
- Sample edge e with probability $p_e \coloneqq \min(1, C \cdot w_e r_e)$
- New weight $\widetilde{w}_e \coloneqq w_e/p_e$ if sampled

Oversampling rate

Edge Laplacian

- Unbiased: $\mathbb{E}[\tilde{L}] = \mathbb{E}[\sum_{e \in E} \widetilde{w}_e L_e] = \sum_{e \in E} w_e L_e = L$
- Matrix Chernoff $\Rightarrow \epsilon$ -spectral sparsifier w.h.p. when $C = \Theta\left(\frac{\log n}{\epsilon^2}\right)$
- Expected #edges = $O(\sum_{e \in E} p_e) = O(C \cdot \sum_{e \in E} w_e r_e) = O\left(\frac{n \log n}{\epsilon^2}\right)$

Sum of $w_e r_e$ is O(n)

Importance (aka Leverage Score) Sampling

• Effective resistance as "importance" of edge e = uv:

$$r_e := \left\| L^{-\frac{1}{2}} (\chi_u - \chi_v) \right\|^2 = \max_{x \in \mathbb{R}^V} \frac{x^T L_e x}{x^T L x}$$

("Maximum contribution of edge energy to the overall energy")

• Importance of a hyperedge *e* can be similarly defined as

$$r_e := \max_{x \in \mathbb{R}^V} \frac{Q_e(x)}{Q_H(x)}$$

$$\max_{u,v \in e} (x(u) - x(v))^2$$

Clique-Graph Reweighting [CKN '20, KKTY '22, Lee '23]

• G = (V, F), each hyperedge replaced with clique

<u>Lemma</u> [KKTY '22, Lee '23] There exists edge weights $c_{e,u,v} \ge 0$ on F s.t.:

- $-\sum_{u,v\in e} c_{e,u,v} = w_e$ for all $e\in E$
- If $c_{e,u,v}>0$, then $r_{u,v}=\max_{u',v'\in e}r_{u',v'}$, where $r_{u,v}$ is the effective

resistance between u and v in the c-weighted graph.

Computing $c_{e,u,v}$

<u>Lemma</u> [KKTY '22, Lee '23] There exist edge weights $c_{e,u,v} \ge 0$ on F s.t.:

- $-\sum_{u,v\in e} c_{e,u,v} = w_e$ for all $e\in E$
- If $c_{e,u,v}>0$, then $r_{u,v}=\max_{u',v'\in e}r_{u',v'}$, where $r_{u,v}$ is the effective

resistance between u and v in the c-weighted clique-graph.

• The weights $c_{e,u,v}$ can be found via convex optimization:

max
$$\log \det \left(\sum_{e \in E} \sum_{u,v \in e} c_{e,u,v} L_{u,v} + J\right)$$

s.t. $\sum_{u,v \in e} c_{e,u,v} = w_e$ $\forall e \in E$
 $c_{e,u,v} \geq 0$ $\forall e \in E, u,v \in e$

The second condition in lemma follows from KKT condition

Sampling Algorithm [Lee '23]

- Given hypergraph H = (V, E, w)
- Compute $c_{e,u,v}$ for the clique graph G=(V,F)
- Sample hyperedge $e \in E$ w.p. $p_e = \min(1, C \cdot w_e \max_{u,v \in e} r_{u,v})$, weight $\widetilde{w}_e = w_e/p_e$ if sampled
- $\max_{u,v\in e} r_{u,v}$ is a computable **overestimate** of the importance of e
- Talagrand's generic chaining \Rightarrow Sampled hypergraph \widetilde{H} is an ϵ -spectral sparsifier of H w.h.p. when $C = \Theta\left(\frac{\log n \log r}{\epsilon^2}\right)$

Bound on number of hyperedges [Lee '23]

• The expected number of hyperedges is $O(C \cdot \sum_{e \in E} w_e \max_{u,v \in e} r_{u,v})$

Property 1 of $c_{e,u,v}$

$$w_e \max_{\mathbf{u}, \mathbf{v} \in e} r_{\mathbf{u}, \mathbf{v}} = \sum_{u, v \in e} c_{e, u, v} \max_{u', v' \in e} r_{u', v'}$$
$$= \sum_{u, v \in e} c_{e, u, v} r_{u, v}$$
Property 2 of $c_{e, u, v}$

• This is
$$O(C \cdot \sum_{e \in E} \sum_{u,v \in e} c_{e,u,v} r_{u,v}) = O(C \cdot n) = O\left(\frac{n \log n \log r}{\epsilon^2}\right)$$

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

Our online algorithm

$$\widetilde{H}_0\coloneqq (V,\emptyset), L_0\coloneqq O_n$$
 (zero matrix) for $i=1,2,\ldots,T$: e_i arrives with weight w_i Solve the convex optimization problem for $c_{i,u,v}$: Ridge regularizer for warm start $\max_{c_i\in\Delta_{e_i}}\log\det(L_{i-1}+\sum_{u,v\in e_i}w_ic_{i,u,v}L_{u,v}+\eta I_n)$ Ridged effective resistance $L_i\leftarrow L_{i-1}+\sum_{u,v\in e_i}w_ic_{i,u,v}L_{u,v}$ Clique-graph reweighting Ridged effective resistance Set $p_i\coloneqq \min(1,C\cdot w_i\max_{u,v\in e_i}\left\|(L_i+\eta I)^{-1/2}(\chi_u-\chi_v)\right\|_2^2)$ Add e_i with weight w_i/p_i to \widetilde{H}_{i-1} with probability p_i to obtain \widetilde{H}_i

Note that this is independent sampling!!

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

Outline of Analysis

Need to show two things:

- The sampled hypergraph \widetilde{H}_T is an (ϵ, δ) -spectral sparsifier of H_T
- The number of hyperedges in \widetilde{H}_T is small

\widetilde{H}_T is an (ϵ, δ) -spectral sparsifier of H_T

- Let $\eta \coloneqq \delta/\epsilon$. Define η -ridged energy as $Q_H^{\eta}(x) \coloneqq Q_H(x) + \eta \|x\|^2$
- Let $Z := \sup_{x: Q_H^{\eta}(x) \le 1} |Q_H^{\eta}(x) Q_{\widetilde{H}}^{\eta}(x)|$
 - Note pointwise concentration
- Use Talagrand's generic chaining to bound $\mathbb{E}_{\widetilde{H}}[e^{\lambda Z}]$

[Jambulapati, Lee, Liu, Sidford '23] Oversampling rate

- For $C = \Theta(\epsilon^{-2} \log n \log r)$, the exponential MGF bound implies that $\Pr[Z \le \epsilon] \ge 1 1/n$
- Finally, $Z \le \epsilon$ implies that $(1-\epsilon)Q_H(x) \delta \|x\|^2 \le Q_{\widetilde{H}}(x) \le (1+\epsilon)Q_H(x) + \delta \|x\|^2$

Bound on the number of hyperedges

- Adaptation of [Cohen, Musco, Pachocki '16]
- Define $\Phi_i := \log \det(L_i + \eta I_n) = \log \det(L_i^{\eta})$

Lemma [STY'24]
$$\Phi_i - \Phi_{i-1} \ge \frac{p_i \log 2}{C}$$

•
$$\mathbb{E}[|E(\widetilde{H})|] = \sum_{i} p_{i} \leq \frac{C(\Phi_{T} - \Phi_{0})}{\log 2}$$
, where $C = \Theta(\epsilon^{-2} \log n \log r)$

•
$$\Phi_T - \Phi_0 = \log\left(\frac{\det(L_T + \eta I_n)}{\det(\eta I_n)}\right) = \log\det(I + \eta^{-1}L_T) \leq n\log\left(1 + \frac{tr(L_T)}{\eta \cdot n}\right)$$

• Plug in
$$\eta = \delta/\epsilon$$
 and use $tr(L_T) \le O(W)$. Conclude that
$$\mathbb{E}[|E(\widetilde{H})|] \le O\left(\epsilon^{-2} n \log n \log r \log\left(1 + \frac{\epsilon W}{\delta n}\right)\right)$$

$$\mathbb{E}[|E(\widetilde{H})|] \le O\left(\epsilon^{-2}n\log n\log r\log\left(1 + \frac{\epsilon W}{\delta n}\right)\right)$$

Working memory

- The algorithm maintains a clique-graph reweighting
- $O(n^2)$ working memory

- Introduction
- Past Work
- Our Algorithm
- Analysis
- Summary

Summary and Open Questions

- First online algorithm for spectral hypergraph sparsification
 - $O(\epsilon^{-2}n \log n \log r \log \frac{\epsilon W}{\delta n})$ hyperedges
 - $\Omega(\epsilon^{-2}n\log\frac{\epsilon W}{\delta n})$ edges needed even for graphs [Cohen, Musco, Pachocki '16]
- Reduce the space complexity from $O(n^2)$ to $\tilde{O}(nr)$?
- Fully dynamic setting?
- Potential function-based algorithms?
- How to certify hypergraph cut/spectral sparsifier?

The End

• Thank you! Any questions?