Online Algorithms for Spectral
Sparsification of Hypergraphs

Kam Chuen (Alex) Tung
PhD Candidate, University of Waterloo
15 January 2025 @ U Waterloo

Joint work with Tasuku Soma (ISM Japan) and Yuichi Yoshida (NII Japan)

Slides mostly based on Soma and Yoshida

Table of Content

* Introduction

* Past Work

* Our Algorithm
 Analysis

* Summary

Table of Content

* Introduction

Graph Sparsification

* Let G=(V, E) be a graph
* Objective: reduce graph size to speed up downstream algorithms

 What to preserve?
» Shortest paths -> Spanners [Peleg, Schiffer '89]
* Cuts -> Cut sparsifiers [Karger 93], [Benczur, Karger '96]
* Spectrum -> Spectral sparsifiers [Spielman, Teng '11]
* Many other possibilities...

Cut Sparsification of Graphs

¢ = (V,E,w) weighted graph
» G = (V,E, W) reweighted subgraph, edge weight w, > 0

G is an e-cut sparsifier of G if:
* (1 —e€)cuts(S) < cutz(S) < (1 +€e)cuts(S) forallS c V
* The number of edges (with positive w,) issmall ___

OO

\ ;O
AS /
\N-’,

cut(S) = Xees(s) We

Spectral Sparsification of Graphs spiciman, reng 111

e L: Laplacian of G, L: Laplacian of G

e Quadratic form: x'Lx = Y, ,ex Wuv(x(u) — x(v))2
e Want (1 — €)xTLx < xTLx < (1 +€)xTLx forallx € RV

e Spectral sparsifier is cut sparsifier: when x = y¢, x' Lx = cut;(S)

Spectral Sparsification of Graphs: Methods

n polylogn

* Decomposition-based: O () edges [spielman, Teng ‘11]

€2
nlogn

¢ Sampling-based: 0 (o2) edges [Spielman, Srivastava ‘08]
n

* Potential function-based: O () edges [Batson, Spielman, Srivastava ‘09]

€2

* Applications: Laplacian solvers, flow/cut algorithms, clustering,
sampling spanning trees...

Spectral Sparsification of Hypergraphs

- -
\\

L
N\

/
\
IO\

* Hypergraph cut: cuty (S) = Zo<|enS|<|e| We

O

O

’—_——_.~
~~.-———"

-

/

* Hypergraph energy/“quadratic form” [Soma, Yoshida‘19] —~

~ s

- -

Qu(®) = g we - max (x() — x(v)’

e Want (1 —¢€)Qy(x) < Qz(x) < (1 +¢€)Qy(x) forallx € RV

» Spectral sparsifier is cut sparsifier: when x = yg, Qy(x) = cuty(S)

n = |V|,r = max|e]|
A

Hypergraph Sparsification: Results

Reference #hyperedges | Cut/ Method
Spectral"

n(r+log n)

'Kogan, Krauthgamer '15] Sampling

'Soma, Yoshida '19] o™ 108") Spectral Sampling

'Bansal, Svensson, Trevisan '19] 0

nr° log n) Spectral Sampling

'Chen, Khanna, Nagda '20] 0

nlog ") Cut Sampling

[Kapralov, Krauthgamer, Tardos, Yoshida '22] 0

e ”) Spectral Sampling

[Lee ‘23, Jambulapati, Liu, Sidford ‘23] o

(
(
(
[Kapralov, Krauthgamer, Tardos, Yoshida '21] 5(nr) Spectral Decomposition
(
(

nlogn log ”) Spectral Sampling

Memory Issue

* All these algorithms are offline
 For hypergraphs, m := |E| can be as large as 2"
* May be expensive simply to store the entire hypergraph!

GOAL: Sparsifier without using Q(m) memory

Online Setting

* Hyperedges e; (weight w;) arrive one by one

* Upon arrival, the algorithm decides immediately whether to
include e;, and the new weight w; if applicable

 Task: find a spectral sparsifier using poly(n) working memory

Our Result

Definition H: (¢, §)-spectral sparsifier of H iff

(1 —€)Qu(x) — 6llxlI3 < Qr(x) < (1 + €)Qu(x) + 5lIxlI3

Theorem [Soma, T, Yoshida’24] There is an online algorithm that computes

an (€, 0)-spectral sparsifier with O (e‘zn lognlogrlog %) hyperedges
w.h.p., using 0 (n?) space. (Here W := maxw,)
e

e r-uniform and unweighted: O (e~ ?nr log® nlogr) hyperedges
* Sampling-based algorithm

Table of Content

e Past Work

EffeCtlve ReSIStanCe Sampllng |Spielman, Srivastava '08]

* Sample graph edge e = uv proportional to effective resistance 7,

_ 2 _
*Te = ”L 1/2()(u o Xv)” — (Xu T Xv)TL 1(Xu o Xv)
« Sample edge e with probability p, := min(1, C-hwere)

* New weight w, := w, /p, if sampled Oversampling rate

Edge Laplacian

. V
* Unbiased: IE[] [ZeEE We] ZeEE WeL =L

* Matrix Chernoff = e-spectral sparsifier w.h.p. when C = 0 (loegzn)

1
* Expected #edges = 0(ZeegPe) = O(C - LeegWeTe) = 0 (n szg n)
I~

Sum of w1, is 0(n)

Importance (aka Leverage Score) Sampling

* Effective resistance as “importance” of edge e = uv:
2

= max —

xTLex

Te = HL_%(XU, o Xv)

(“Maximum contribution of edge energy to the overall energy”)

* Importance of a hyperedge e can be similarly defined as

o— Qe(x) 2
T = MAK e LBk)

Clique-Graph Reweighting cxn 2o, kkry 22, Lee 23]

* ¢ = (V,F), each hyperedge replaced with clique

O O j>

O O ﬁ

Lemma [KKTY ‘22, Lee ‘23] There exists edge weights c,,,, = 0 on F s.t.:

- YuveeCeuy = We foralle € E

-If ceyp > 0, thenrn, , = max s, where 1, , is the effective

resistance between u and v in the c-weighted graph.

Computing C, 4,

Lemma [KKTY ‘22, Lee '23] There exist edge weights ¢, ,,, = 0 on F s.t.:
- Zu,vEe Ceuv — We foralle € E

-If ceyp > 0, thenrn, , = max s, where 1, , is the effective

resistance between u and v in the c-weighted clique-graph.

* The weights ¢, ,, ,, can be found via convex optimization:
max log det(ZeEE ZumEe Ce,u,vLu,v +])
st. DuveeCeuv = We Ve €EE
Ceyp = 0 Vee E,u,vee

* The second condition in lemma follows from KKT condition

Sampling Algorithm qree 23

* Given hypergraph H = (V, E,w)

* Compute ¢, ,, , for the clique graph ¢ = (V, F)

e Sample hyperedge e € E w.p. p, = min(1,C - w, max Tuv), weight
u,vee

w, = w, /p, if sampled

* max 1y, , is a computable overestimate of the importance of e
u,vee

» Talagrand’s generic chaining = Sampled hypergraph H is an e-
lognlog r)
62

spectral sparsifier of H w.h.p. when C = 0

Bound on number of hyperedges p.ce 2

* The expected number of hyperedges is O(C -), .eg W, max Tyuv)
u,vee

Property 1 of ¢4,

We MAXy yvee Ty = Zu,vEe Ceou,p MAXy ! ylco Tyl 3/

— Zu,vee Ce,u,vru,v % Property 2 of ¢, 4,5,

o]]
e This is O(C . ZeEE Zu,vEe Ce,u,vru,V) = O(C . n) =0 (n Og; - T)
_—1__

Sum of wy, 13, ,, is O(n)

Table of Content

* Our Algorithm

Our online algorithm

Hy = (V,0), L, := 0, (zero matrix)
fori =1,2,..,T:
e; arrives with weight w;

Solve the convex optimization problem for ¢; 4, ,,: dge regularizer for warm start

max log det(Li—1 T Zu,vEei WiCi,u,vLu,v + 77111) —

2 Clique-graph reweighting Ridged effective resistance
Li A Li—l T Zu,vEei Wici,u,vLuv -

. _ 2
Setp; := min(1,C - w; l{l})éelé(_H(Li + 0172y, — xo) |2)

Add e; with weight w; /p; to H;_, with probability p; to obtain H;
Note that this is independent sampling!!

Table of Content

 Analysis

Outline of Analysis

Need to show two things:
» The sampled hypergraph H; is an (¢, §)-spectral sparsifier of Hr
» The number of hyperedges in H; is small

H: is an (€, §)-spectral sparsifier of Hr

* Letn := § /€. Define n-ridged energy as QZ(x) = Qyu(x) + nllx||?
*LetZ:= sup [Q](x)— QZ(x)\

x: Qpr(x)<1
* Note pointwise concentration

» Use Talagrand’s generic chaining to bound Ez[e*?]
[Jambulapati, Lee, Liu, Sidford 23] Oversampling rate

* For C = O(e¢2lognlogr);the exponential MGF bound implies
thatPr|Z <e]=1-1/n

* Finally, Z < e implies that
(1—€)Qu(x) — 6llx|I* < Qa(x) < (1 + €)Qu(x) + &llx]|?

Bound on the number of hyperedges

* Adaptation of [Cohen, Musco, Pachocki "16]
» Define @; := logdet(L; + nl,) = logdet(L))

pilog 2
C

Lemma [STY 24] ®; — D;_ =

- E[|E(A)|] = Zopi < S92

l AM-GM
. - _ det(Lt+nIn)\ _ 1 tr(LT)
Or — Py = log(Getnl)) = logdet(/ + n~"Ly) < nlog(l + -)

* Pluginn = §/e and use tr(Ly) < O(W). Conclude that
~ eW
E[|E(H)|| <0 (E‘anognlogrlog<1 + E))

, where C = ©(e%lognlogr)

Working memory

* The algorithm maintains a clique-graph reweighting
* 0(n?) working memory

Table of Content

* Summary

Summary and Open Questions

* First online algorithm for spectral hypergraph sparsification
. O(E‘znlognlogrlog%) hyperedges

— eW
* Q(e “nlog E) edges needed even for graphs [Cohen, Musco, Pachocki '16]

» Reduce the space complexity from 0(n?) to O (nr)?
* Fully dynamic setting?

 Potential function-based algorithms?

* How to certify hypergraph cut/spectral sparsifier?

The End

* Thank you! Any questions?

	Start
	Slide 1: Online Algorithms for Spectral Sparsification of Hypergraphs
	Slide 2: Table of Content

	Introduction
	Slide 3: Table of Content
	Slide 4: Graph Sparsification
	Slide 5: Cut Sparsification of Graphs
	Slide 6: Spectral Sparsification of Graphs [Spielman, Teng ’11]
	Slide 7: Spectral Sparsification of Graphs: Methods
	Slide 8: Spectral Sparsification of Hypergraphs
	Slide 9: Hypergraph Sparsification: Results
	Slide 10: Memory Issue
	Slide 11: Online Setting
	Slide 12: Our Result

	Past Work
	Slide 13: Table of Content
	Slide 14: Effective Resistance Sampling [Spielman, Srivastava ’08]
	Slide 15: Importance (aka Leverage Score) Sampling
	Slide 16: Clique-Graph Reweighting [CKN ’20, KKTY ’22, Lee ’23]
	Slide 17: Computing c sub , e ,u ,v end subscript
	Slide 18: Sampling Algorithm [Lee ’23]
	Slide 19: Bound on number of hyperedges [Lee ’23]

	Algorithm
	Slide 20: Table of Content
	Slide 21: Our online algorithm

	Analysis
	Slide 22: Table of Content
	Slide 23: Outline of Analysis
	Slide 24: cap H tilde sub cap T is an open paren script epsilon ,, delta close paren -spectral sparsifier of cap H sub cap T
	Slide 25: Bound on the number of hyperedges
	Slide 26: Working memory

	Summary
	Slide 27: Table of Content
	Slide 28: Summary and Open Questions
	Slide 29: The End

