New Nearly-Optimal Coreset for Kernel Density Estimation

Wai Ming Tai

University of Chicago

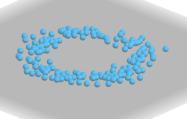
Given:

- ightharpoonup a set $P \subset \mathbb{R}^d$ of size n
- ▶ a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ (Common example is Gaussian kernel $K(x,y) = e^{-\|x-y\|^2}$ and it is the focus in this talk)
- ▶ a query $x \in \mathbb{R}^d$

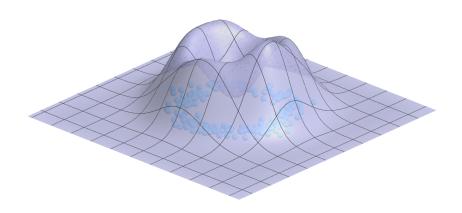
We want to compute:

$$\overline{\mathcal{G}}_P(x) = \frac{1}{n} \sum_{p \in P} e^{-\|x - p\|^2}$$

Dataset P



Kernel Density Estimation of $P \overline{\mathcal{G}}_P(x)$



Some Applications:

- Statistics
 - Use kernel density estimation to approximate the unknown distribution [Silverman 1986, Scott 1992]
- Kernel methods in Machine Learning
 - ▶ Define distance of two point sets by using kernel density estimation, Kernel SVM, Kernel PCA [Scholkopf+Smola 2002]
- Topological data analysis
 - ► Study the level set of kernel density estimation and analysis its topological structure [Phillips et al. SOCG 2015]

Problem Definition

The input size is too large. Need to reduce the size.

Problem Definition

The input size is too large. Need to reduce the size.

Find a ε -coreset $Q \subset P$ s.t.

$$\max_{x \in \mathbb{R}^d} \left| \overline{\mathcal{G}}_P(x) - \overline{\mathcal{G}}_Q(x) \right| \le \varepsilon$$

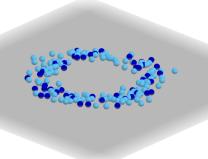
That is,

$$\max_{\mathbf{x} \in \mathbb{R}^d} \left| \frac{1}{|P|} \sum_{p \in P} \mathrm{e}^{-\|\mathbf{x} - p\|^2} - \frac{1}{|Q|} \sum_{q \in Q} \mathrm{e}^{-\|\mathbf{x} - q\|^2} \right| \leq \varepsilon$$

Question: how small can the size of Q, |Q|, be?

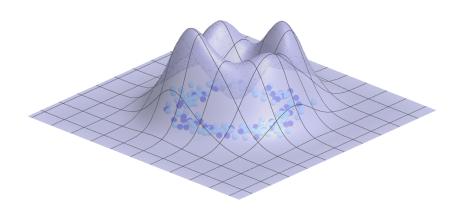
Coreset

Coreset Q



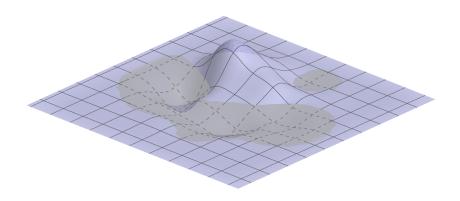
Coreset

Kernel Density Estimation of Q $\overline{\mathcal{G}}_Q(x)$



Coreset

Error $\overline{\mathcal{G}}_P(x) - \overline{\mathcal{G}}_Q(x)$



Previous Results

Highlight of previous results on size of $\varepsilon\text{-coreset}$:

Paper	Size	d
Joshi et al. SOCG 2011	$O(d/\varepsilon^2)$	any
Bach et al. ICML 2012	$O(1/arepsilon^2)$	any
Joshi et al. SOCG 2011	O(1/arepsilon)	1
Phillips SODA 2013	sub- $O(1/arepsilon^2)$	constant
Phillips+Tai SODA 2018	$O(\frac{1}{\varepsilon} \log^d \frac{1}{\varepsilon})$	constant
Phillips+Tai SOCG 2018	$O(\frac{1}{\varepsilon}\sqrt{d\log\frac{1}{\varepsilon}})$	any
Phillips SODA 2013	$\Omega(1/arepsilon)$	1
Phillips+Tai SODA 2018	$\Omega(1/\varepsilon^2)$	$\leq 1/\varepsilon^2$
Phillips+Tai SOCG 2018	$\Omega(\sqrt{d}/arepsilon)$	$> 1/\varepsilon^2$

Previous Results

Highlight of previous results on size of ε -coreset:

	Paper	Size	d
Joshi et al.	SOCG 2011	$O(d/\varepsilon^2)$	any
Bach et al.	ICML 2012	$O(1/\varepsilon^2)$	any
Joshi et al.	SOCG 2011	O(1/arepsilon)	1
Phillips	SODA 2013	sub- $O(1/arepsilon^2)$	constant
${\sf Phillips+Tai}$	SODA 2018	$O(rac{1}{arepsilon}\log^drac{1}{arepsilon})$	constant
Phillips+Tai	SOCG 2018	$O(\frac{1}{\varepsilon}\sqrt{d\log\frac{1}{\varepsilon}})$	any
Phillips	SODA 2013	$\Omega(1/arepsilon)$	1
Phillips+Tai	SODA 2018	$\Omega(1/\varepsilon^2)$	$\leq 1/arepsilon^2$
Phillips+Tai	SOCG 2018	$\Omega(\sqrt{d}/arepsilon)$	$> 1/\varepsilon^2$

Our Result: $O(\frac{1}{\varepsilon}\sqrt{\log^*\frac{1}{\varepsilon}\log\log^*\frac{1}{\varepsilon}})$ when d is a constant

By standard halving technique, the following problem is equivalent to our problem definition.

Given:

▶ Point set $P \in \mathbb{R}^d$

Find:

ightharpoonup Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

- Our problem: fix the error , minimize the size
- ▶ Equivalent problem: fix the size , minimize the error

- Our problem: fix the error, minimize the size
- ▶ Equivalent problem: fix the size , minimize the error

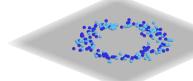
$$\frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x - p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x - p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x - p\|^2} \right|$$

- Our problem: fix the error , minimize the size
- ▶ Equivalent problem: fix the size , minimize the error

$$\frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x - p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x - p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x - p\|^2} \right|$$

- Our problem: fix the error , minimize the size
- Equivalent problem: fix the size, minimize the error

$$\frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x-p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x-p\|^2} \right|$$

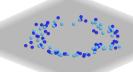


- Our problem: fix the error , minimize the size
- Equivalent problem: fix the size , minimize the error

$$\left| \frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x - p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x - p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x - p\|^2} \right|$$

- Our problem: fix the error , minimize the size
- ▶ Equivalent problem: fix the size , minimize the error

$$\frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x-p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x-p\|^2} \right|$$



- Our problem: fix the error , minimize the size
- ▶ Equivalent problem: fix the size , minimize the error

$$\frac{1}{|P|} \left| \sum_{p \in P} \sigma(p) e^{-\|x - p\|^2} \right| = \left| \frac{1}{|P|} \sum_{p \in P} e^{-\|x - p\|^2} - \frac{1}{|P|/2} \sum_{p \in P_+} e^{-\|x - p\|^2} \right|$$

Problem Definition

Now, our problem definition becomes Given:

▶ Point set $P \in \mathbb{R}^d$

Find:

ightharpoonup Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{\mathbf{x} \in \mathbb{R}^d} \left| \sum_{\mathbf{p} \in P} \sigma(\mathbf{p}) e^{-\|\mathbf{x} - \mathbf{p}\|^2} \right|$

Problem Definition

Now, our problem definition becomes Given:

▶ Point set $P \in \mathbb{R}^d$

Find:

ightharpoonup Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

Our target size of coreset is

$$O(\frac{1}{\varepsilon} \sqrt{\log^* \frac{1}{\varepsilon} \log \log^* \frac{1}{\varepsilon}})$$

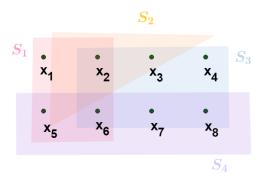
Our goal becomes

$$| \max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x - p\|^2} \right| = O(\sqrt{\log^* n \log \log^* n})$$

Discrepancy Theory

Given a set system:

- $X = \{x_i \mid i = 1, 2, ..., n\}$
- ▶ $S = \{S_i \mid i = 1, 2, ..., m\}$ where S_i is subset of X



Discrepancy Theory

For a given coloring $\sigma:\{1,2,\ldots,n\}\to\{-1,+1\}$, define the discrepancy of a set S

$$\operatorname{disc}(\sigma,S) = \left| \sum_{x_i \in S} \sigma(x_i) \right|$$

and the discrepancy of a set system (X, S)

$$\mathsf{disc}(\mathcal{S}) = \min_{\sigma} \max_{S \in \mathcal{S}} \mathsf{disc}(\sigma, S)$$

Goal: minimize disc(S)

Matrix Representation

Suppose A is a m-by-n matrix s.t. $A_{i,j} = \begin{cases} 1 & \text{if } x_j \in S_i \\ 0 & \text{otherwise.} \end{cases}$

$$S_{2}$$
 S_{1}
 x_{1}
 x_{2}
 x_{3}
 x_{4}
 x_{5}
 x_{6}
 x_{7}
 x_{8}
 x_{8}

Define discrepancy of A

$$\operatorname{disc}(A) = \min_{x \in \{-1, +1\}^n} \|Ax\|_{\infty}$$

Note: disc(S) = disc(A)Can be generalized to arbitrary matrix

Our Problem

Recall that our problem definition is

Given:

▶ Point set $P \in \mathbb{R}^d$

Find:

▶ Coloring $\sigma: P \rightarrow \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

Our Problem in "matrix" form

Our objective is:

$$\max_{\mathbf{x} \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|\mathbf{x} - p\|^2} \right| = \|K\sigma\|_{\infty}$$

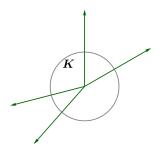
where

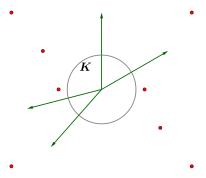
$$K = x \in \mathbb{R}^d \quad \left\{ \begin{array}{|c|c|c} p \in P \\ \vdots \\ \cdots & e^{-\|x-p\|^2} & \cdots \\ \vdots & \vdots \end{array} \right.$$

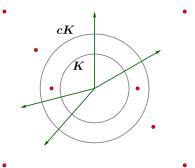
Banaszczyk's Theorem [Banaszczyk 1998]: Given:

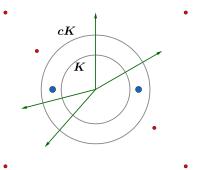
- lacktriangle a convex body $K\in\mathbb{R}^m$ with Gaussian measure $\gamma_m(K)>rac{1}{2}$
- ightharpoonup n vectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)} \in \mathbb{R}^m$ such that $\left\|v^{(i)}\right\| \leq 1$

Then: there is a coloring $\sigma:\{1,2,\ldots,n\}\to\{-1,+1\}$ such that $\sum_{i=1}^n\sigma(i)v^{(i)}\in cK$ for some absolute constant c









Equivalent statement of Banaszczyk's Theorem

Equivalent statement of Banaszczyk's Theorem [Dadush et al. RANDOM 2016]:

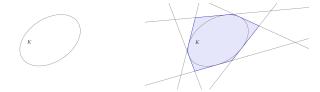
Given:

$$ightharpoonup n$$
 vectors $v^{(1)}, v^{(2)}, \dots, v^{(n)} \in \mathbb{R}^m$ such that $||v^{(i)}|| \leq 1$

Then: there is a probability distribution on $\{\sigma:\{1,2,\ldots,n\}\to\{\pm 1\}\}$ such that there are two absolute constant C_1,C_2 such that, for any unit vector $\theta\in\mathbb{R}^d$ and $\alpha>0$,

$$\Pr\left[\left|\left\langle \sum_{i=1}^{n} \sigma(i) v^{(i)}, \theta \right\rangle\right| > \alpha\right] < C_1 e^{-C_2 \alpha^2}$$

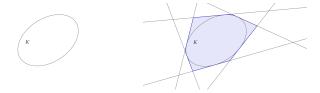
Why equivalent?



- can always "approximate" a convex body by the intersection of a number of half-spaces
- bound the number of event in union bound

Why equivalent?

Equivalence:



- can always "approximate" a convex body by the intersection of a number of half-spaces
- bound the number of event in union bound

A recent result [Bansal et al. STOC 2018] showed that it is constructive

Our Problem

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$ Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

We want to use Banaszczyk's Theorem:

Given: n vectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)} \in \mathbb{R}^m$ such that $||v^{(i)}|| \leq 1$ Then: there is a randomized algorithm to construct a coloring σ such that, for any unit vector $\theta \in \mathbb{R}^d$ and $\alpha > 0$,

$$\Pr\left[\left|\left\langle \sum_{i=1}^n \sigma(i) v^{(i)}, \theta \right\rangle\right| > \alpha\right] < O(e^{-\Omega(\alpha^2)})$$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

We want to use Banaszczyk's Theorem:

Given: n vectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)} \in \mathbb{R}^m$ such that $||v^{(i)}|| \leq 1$ Then: there is a randomized algorithm to construct a coloring σ such that, for any unit vector $\theta \in \mathbb{R}^d$ and $\alpha > 0$,

$$\Pr\left[\left|\left\langle \sum_{i=1}^{n} \sigma(i) v^{(i)}, \theta \right\rangle\right| > \alpha\right] < O(e^{-\Omega(\alpha^2)})$$

But, what is our input vectors $v^{(1)}, v^{(2)}, \dots, v^{(n)}$?

Positive-Definite Kernel

A symmetric function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called positive-definite kernel if:

• for any $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \mathbb{R}^d$ and $c_1, c_2, \dots, c_n \in \mathbb{R}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j K(x^{(i)}, x^{(j)}) > 0$$

- Namely, matrix G whose (i,j)-entry is $K(x^{(i)},x^{(j)})$ is a positive-definite matrix
- ightharpoonup G can be decomposed into the form H^TH for some matrix H Gaussian Kernel is a positive-definite kernel

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$ Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

In "matrix" form:

Our objective is:

$$\max_{\mathbf{x} \in \mathbb{R}^d} \left| \sum_{\mathbf{p} \in P} \sigma(\mathbf{p}) e^{-\|\mathbf{x} - \mathbf{p}\|^2} \right| = \|K\sigma\|_{\infty}$$

where

$$K = \underbrace{x \in \mathbb{R}^d} \left\{ \underbrace{\begin{bmatrix} \vdots \\ \cdots \\ e^{-\|x-p\|^2} \end{bmatrix}}_{:::} \right\}$$

Important fact: Gaussian Kernel is a positive-definite kernel

Important fact: Gaussian Kernel is a positive-definite kernel K can be decomposed into the following form.

$$K = {\underset{x \in \mathbb{R}^d}{\mathbb{R}^d}} \left\{ \begin{bmatrix} \vdots \\ -u^{(x)} \\ \vdots \end{bmatrix} - \begin{bmatrix} \vdots \\ -u^{(p)} \end{bmatrix} \right\}$$

Important fact: Gaussian Kernel is a positive-definite kernel K can be decomposed into the following form.

$$K = {x \in \mathbb{R}^d} \quad \left\{ \begin{bmatrix} \vdots \\ -u^{(x)} \\ \vdots \end{bmatrix} \right. \quad \underbrace{\begin{bmatrix} \vdots \\ -u^{(p)} \end{bmatrix}}_{p \in P}$$

We take $u^{(p)}$ as the input of Banaszczyk's Theorem Note:

- $ightharpoonup u^{(p)}$ has norm 1
- $\langle u^{(x)}, u^{(p)} \rangle = e^{-\|x-p\|^2}$

Recall that Banaszczyk's Theorem stated the following: Given: n vectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)} \in \mathbb{R}^m$ such that $\|v^{(i)}\| \leq 1$ Then: there is a randomized algorithm to construct a coloring σ such that, for any unit vector $\theta \in \mathbb{R}^d$ and $\alpha > 0$,

$$\Pr\left[\left|\left\langle \sum_{i=1}^n \sigma(i) v^{(i)}, \theta \right\rangle\right| > \alpha\right] < O(e^{-\Omega(\alpha^2)})$$

Recall that Banaszczyk's Theorem stated the following: Given: n vectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)} \in \mathbb{R}^m$ such that $\|v^{(i)}\| \leq 1$ Then: there is a randomized algorithm to construct a coloring σ such that, for any unit vector $\theta \in \mathbb{R}^d$ and $\alpha > 0$,

$$\Pr\left[\left|\left\langle \sum_{i=1}^n \sigma(i) v^{(i)}, \theta \right\rangle\right| > \alpha\right] < O(e^{-\Omega(\alpha^2)})$$

By Banaszczyk's Theorem, we can construct a coloring σ such that

$$\left| \left| \left\langle \sum_{p \in P} \sigma(p) u^{(p)}, \theta \right\rangle \right| > \alpha \right| < O(e^{-\Omega(\alpha^2)})$$

We have:

$$\Pr\left[\left|\left\langle \sum_{p\in P} \sigma(p)u^{(p)}, \theta \right\rangle\right| > \alpha\right] < O(e^{-\Omega(\alpha^2)})$$

We have:

$$\left| \left| \left\langle \sum_{p \in P} \sigma(p) u^{(p)}, \theta \right\rangle \right| > \alpha \right| < O(e^{-\Omega(\alpha^2)})$$

If we set $\theta = u^{(x)}$, we have

$$\Pr\left[\left|\sum_{p\in P} \sigma(p)e^{-\|x-p\|^2}\right| > \alpha\right]$$

$$= \Pr\left[\left|\left\langle\sum_{p\in P} \sigma(p)u^{(p)}, u^{(x)}\right\rangle\right| > \alpha\right]$$

$$< O(e^{-\Omega(\alpha^2)})$$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$ Goal: minimize $\max_{\mathbf{x} \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|\mathbf{x} - p\|^2} \right|$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{x \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right|$

From Banaszczyk's Theorem, we have

$$\Pr\left[\left|\sum_{p\in P}\sigma(p)e^{-\|x-p\|^2}\right|>\alpha\right]< O(e^{-\Omega(\alpha^2)})$$

for one $x \in \mathbb{R}^d$

Our problem definition:

Given: Point set $P \in \mathbb{R}^d$

Find: Coloring $\sigma: P \to \{-1, +1\}$

Goal: minimize $\max_{\mathbf{x} \in \mathbb{R}^d} \left| \sum_{p \in P} \sigma(p) e^{-\|\mathbf{x} - p\|^2} \right|$

From Banaszczyk's Theorem, we have

$$\Pr\left[\left|\sum_{p\in P}\sigma(p)\mathrm{e}^{-\|x-p\|^2}\right|>\alpha\right]< O(\mathrm{e}^{-\Omega(\alpha^2)})$$

for one $x \in \mathbb{R}^d$

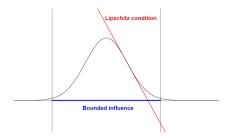
There are infinitely many $x \in \mathbb{R}^d$

Lipschitz condition:

► Slope of the kernel cannot be too large

Bounded influence:

► Kernel value is negligible if the query is far away from data



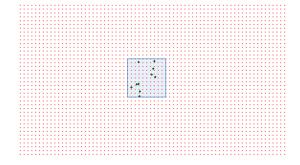
Assumption: P lies inside a ℓ_{∞} -ball of radius 1 (we can remove it later)

Assumption: P lies inside a ℓ_{∞} -ball of radius 1 (we can remove it later) From the observations:

Assumption: P lies inside a ℓ_{∞} -ball of radius 1 (we can remove it later) From the observations:

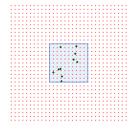
Assumption: P lies inside a ℓ_{∞} -ball of radius 1 (we can remove it later)

From the observations:



Assumption: P lies inside a ℓ_∞ -ball of radius 1 (we can remove it later)

From the observations:



How large is the size of this grid?

How large is the size of this grid?

Denote
$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

How large is the size of this grid?

Denote
$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

From the observations:

- ▶ The slope of $D_{\sigma,P}(x)$ is O(n)
- $ightharpoonup |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

From the observations:

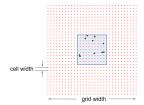
- ▶ The slope of $D_{\sigma,P}(x)$ is O(n)
- $ightharpoonup |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

From the observations:

- ► The slope of $D_{\sigma,P}(x)$ is O(n)
- $\blacktriangleright |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

It implies:

- ▶ The cell width is $\Omega(1/n)$
- ► The grid width is $O(\sqrt{\log n})$

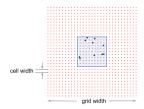


From the observations:

- ► The slope of $D_{\sigma,P}(x)$ is O(n)
- $\blacktriangleright |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

It implies:

- ▶ The cell width is $\Omega(1/n)$
- ► The grid width is $O(\sqrt{\log n})$



Size of the grid: $O(n^{O(d)})$

First Attempt

We have:

- ▶ $\mathbf{Pr}[|D_{\sigma,P}(x)| > \alpha] < O(e^{-\Omega(\alpha^2)})$ for one $x \in \mathbb{R}^d$
- ▶ $|D_{\sigma,P}(x)|$ is small on x in a finite grid of size $O(n^{O(d)})$ implies $|D_{\sigma,P}(x)|$ is small on $x \in \mathbb{R}^d$

First Attempt

We have:

- ▶ $\Pr[|D_{\sigma,P}(x)| > \alpha] < O(e^{-\Omega(\alpha^2)})$ for one $x \in \mathbb{R}^d$
- ▶ $|D_{\sigma,P}(x)|$ is small on x in a finite grid of size $O(n^{O(d)})$ implies $|D_{\sigma,P}(x)|$ is small on $x \in \mathbb{R}^d$

If we set $\alpha = O(\sqrt{\log n})$ then we have

$$\left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right| = O(\sqrt{\log n})$$

for all $x \in \mathbb{R}^d$

Slightly Strong Result

Recall that
$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

Slightly Strong Result

Recall that
$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

It can be rewritten as

$$D_{\sigma,P}(x) = e^{-\frac{2}{3}||x||^2} \sum_{p \in P} \sigma(p) e^{2||p||^2} e^{-\frac{1}{3}||x-3p||^2}$$

Slightly Strong Result

Recall that $D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$

It can be rewritten as

$$D_{\sigma,P}(x) = e^{-\frac{2}{3}||x||^2} \sum_{p \in P} \sigma(p) e^{2||p||^2} e^{-\frac{1}{3}||x-3p||^2}$$

By the same technique, we have

$$\left| \sum_{p \in P} \sigma(p) e^{-\|\mathbf{x} - p\|^2} \right| = O(\sqrt{\log n} \cdot e^{-\Omega(\|\mathbf{x}\|^2)})$$

for all $x \in \mathbb{R}^d$

However

$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

The reason why we set $\alpha = \sqrt{\log n}$ is

- ▶ The slope of $D_{\sigma,P}(x)$ is O(n)
- $ightharpoonup |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

However

$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

The reason why we set $\alpha = \sqrt{\log n}$ is

- ▶ The slope of $D_{\sigma,P}(x)$ is O(n)
- $ightharpoonup |D_{\sigma,P}(x)| = O(1) \text{ when } ||x||_{\infty} = \Omega(\sqrt{\log n})$

Can we do better?

More Observations

$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

More Observations

$$D_{\sigma,P}(x) = \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2}$$

For $x, y \in \mathbb{R}^d$, we can express it as

$$|D_{\sigma,P}(x)-D_{\sigma,P}(y)|$$

$$\leq \left| \|y\|^2 - \|x\|^2 \right| |D_{\sigma,P}(x)| + 2 \sum_{j=1}^d |y_j - x_j| \left| D_{\sigma,P}(\xi^{(j)}) \right|$$

for some $\xi^{(j)}$ in between x and y

We have:

- $|D_{\sigma,P}(x)| = O(\sqrt{\log n} \cdot e^{-\Omega(\|x\|^2)}) = O(\sqrt{\log n})$ for all $x \in \mathbb{R}^d$
- ▶ For $x, y \in \mathbb{R}^d$.

$$|D_{\sigma,P}(x) - D_{\sigma,P}(y)|$$

$$\leq \left| ||y||^2 - ||x||^2 \right| |D_{\sigma,P}(x)| + 2 \sum_{i=1}^d |y_i - x_j| \left| D_{\sigma,P}(\xi^{(j)}) \right|$$

We have:

- $|D_{\sigma,P}(x)| = O(\sqrt{\log n} \cdot e^{-\Omega(||x||^2)}) = O(\sqrt{\log n})$ for all $x \in \mathbb{R}^d$
- ▶ For $x, y \in \mathbb{R}^d$,

$$|D_{\sigma,P}(x) - D_{\sigma,P}(y)| \le \left| ||y||^2 - ||x||^2 \left| |D_{\sigma,P}(x)| + 2 \sum_{j=1}^d |y_j - x_j| \left| D_{\sigma,P}(\xi^{(j)}) \right| \right|$$

- ▶ The slope of $D_{\sigma,P}$ is $\tilde{O}(\sqrt{\log n})$
- ► The cell width is $\tilde{\Omega}(1/\sqrt{\log n})$

Also, we have:

 $lacksquare |D_{\sigma,P}(x)| = O(\sqrt{\log n} \cdot e^{-\Omega(\|x\|^2)}) ext{ for all } x \in \mathbb{R}^d$

Also, we have:

$$|D_{\sigma,P}(x)| = O(\sqrt{\log n} \cdot e^{-\Omega(\|x\|^2)})$$
 for all $x \in \mathbb{R}^d$

- $ightharpoonup |D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \Omega(\sqrt{\log\log n})$
- ► The grid width is $O(\sqrt{\log \log n})$

From the observations:

- ▶ The slope of $D_{\sigma,P}(x)$ is $\frac{O(n)}{\tilde{O}(\sqrt{\log n})}$
- $|D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \frac{\Omega(\sqrt{\log n})}{\tilde{\Omega}(\sqrt{\log \log n})}$

- ► The cell width is $\Omega(1/n)$ $\tilde{\Omega}(1/\sqrt{\log n})$
- ► The grid width is $O(\sqrt{\log n}) \tilde{O}(\sqrt{\log \log n})$

From the observations:

- ▶ The slope of $D_{\sigma,P}(x)$ is $\frac{O(n)}{O(\sqrt{\log n})}$
- $|D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \frac{\Omega(\sqrt{\log n})}{\tilde{\Omega}(\sqrt{\log\log n})}$

- ► The cell width is $\Omega(1/n)$ $\tilde{\Omega}(1/\sqrt{\log n})$
- ► The grid width is $O(\sqrt{\log n}) \tilde{O}(\sqrt{\log \log n})$

From the observations:

- ▶ The slope of $D_{\sigma,P}(x)$ is $\frac{O(n)}{\tilde{O}(\sqrt{\log n})}$
- $|D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \frac{\Omega(\sqrt{\log n})}{\tilde{\Omega}(\sqrt{\log \log n})}$

- ► The cell width is $\Omega(1/n)$ $\tilde{\Omega}(1/\sqrt{\log n})$
- ► The grid width is $O(\sqrt{\log n})$ $\tilde{O}(\sqrt{\log \log n})$

From the observations:

- ▶ The slope of $D_{\sigma,P}(x)$ is $\frac{O(n)}{\tilde{O}(\sqrt{\log n})}$
- $|D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \frac{\Omega(\sqrt{\log n})}{\tilde{\Omega}(\sqrt{\log \log n})}$

It implies:

- ► The cell width is $\Omega(1/n)$ $\tilde{\Omega}(1/\sqrt{\log n})$
- ► The grid width is $O(\sqrt{\log n})$ $\tilde{O}(\sqrt{\log \log n})$

Size of the grid: $O((\log n)^{O(d)})$

Improvement

We have:

- ▶ $\mathbf{Pr}[|D_{\sigma,P}(x)| > \alpha] < O(e^{-\Omega(\alpha^2)})$ for one $x \in \mathbb{R}^d$
- ▶ $|D_{\sigma,P}(x)|$ is small on x in a finite grid of size $O((\log n)^{O(d)})$ implies $|D_{\sigma,P}(x)|$ is small on $x \in \mathbb{R}^d$

Improvement

We have:

- ▶ $\Pr[|D_{\sigma,P}(x)| > \alpha] < O(e^{-\Omega(\alpha^2)})$ for one $x \in \mathbb{R}^d$
- ▶ $|D_{\sigma,P}(x)|$ is small on x in a finite grid of size $O((\log n)^{O(d)})$ implies $|D_{\sigma,P}(x)|$ is small on $x \in \mathbb{R}^d$

If we set $\alpha = O(\sqrt{\log \log n})$ then we have

$$\left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right| = O(\sqrt{\log \log n} \cdot e^{-\Omega(\|x\|^2)})$$

for all $x \in \mathbb{R}^d$

If we have $|D_{\sigma,P}(x)| = O({\color{red}eta}\cdot e^{-\Omega(\|x\|^2)})$ for all $x\in\mathbb{R}^d$

If we have $|D_{\sigma,P}(x)| = O(eta \cdot e^{-\Omega(\|x\|^2)})$ for all $x \in \mathbb{R}^d$

- ▶ The slope of $D_{\sigma,P}(x)$ is $\tilde{O}(\beta)$
- $ightharpoonup |D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \Omega(\sqrt{\log \beta})$

If we have $|D_{\sigma,P}(x)| = O(eta \cdot \mathrm{e}^{-\Omega(\|x\|^2)})$ for all $x \in \mathbb{R}^d$

- ▶ The slope of $D_{\sigma,P}(x)$ is $\tilde{O}(\beta)$
- $ightharpoonup |D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \Omega(\sqrt{\log \beta})$

- ightharpoonup The cell width is $\tilde{\Omega}(1/eta)$
- ► The grid width is $\tilde{O}(\sqrt{\log \beta})$

If we have $|D_{\sigma,P}(x)| = O(\beta \cdot e^{-\Omega(\|x\|^2)})$ for all $x \in \mathbb{R}^d$

- ▶ The slope of $D_{\sigma,P}(x)$ is $\tilde{O}(\beta)$
- $ightharpoonup |D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) ext{ when } \|x\|_{\infty} = \Omega(\sqrt{\log eta})$

- ► The cell width is $\tilde{\Omega}(1/\beta)$
- ► The grid width is $\tilde{O}(\sqrt{\log \beta})$

Size of the grid: $O(\beta^{O(d)})$

If we have $|D_{\sigma,P}(x)| = O(\beta \cdot e^{-\Omega(\|x\|^2)})$ for all $x \in \mathbb{R}^d$

- ▶ The slope of $D_{\sigma,P}(x)$ is $\tilde{O}(\beta)$
- $ightharpoonup |D_{\sigma,P}(x)| = O(e^{-\Omega(\|x\|^2)}) \text{ when } \|x\|_{\infty} = \Omega(\sqrt{\log \beta})$

$$\Downarrow$$

- ▶ The cell width is $\tilde{\Omega}(1/\beta)$
- ► The grid width is $\tilde{O}(\sqrt{\log \beta})$

$$\downarrow \downarrow$$

Size of the grid: $O(\beta^{O(d)})$

$$\downarrow$$

If we set $\alpha = O(\sqrt{\log \beta})$ in Banaszczyk's Theorem then we have $|D_{\sigma,P}(x)| = O(\sqrt{\log \beta} \cdot e^{-\Omega(\|x\|^2)})$ for all $x \in \mathbb{R}^d$

After performing $\log^* n$ inductive steps, we have

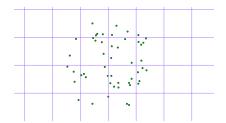
$$\left| \sum_{p \in P} \sigma(p) e^{-\|x-p\|^2} \right| = O(\sqrt{\log^* n \log \log^* n} \cdot e^{-\Omega(\|x\|^2)})$$

for all $x \in \mathbb{R}^d$ if P lies inside a ℓ_{∞} ball of radius 1

Final Bound

Removing the assumption of P being inside a ℓ_{∞} ball of radius 1:

- partition the input P
- lacktriangle run our algorithm on each ℓ_∞ ball of radius 1
- an extra constant factor depending on d in the final bound



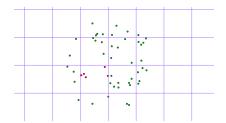
Our Result:
$$\left|\sum_{p\in P} \sigma(p)e^{-\|x-p\|^2}\right| = O(\sqrt{\log^* n \log \log^* n})$$

Size of coreset: $O(\frac{1}{\varepsilon}\sqrt{\log^*\frac{1}{\varepsilon}\log\log^*\frac{1}{\varepsilon}})$ when d is constant

Final Bound

Removing the assumption of P being inside a ℓ_{∞} ball of radius 1:

- partition the input P
- lacktriangle run our algorithm on each ℓ_{∞} ball of radius 1
- an extra constant factor depending on d in the final bound



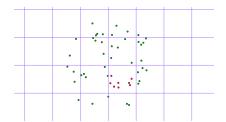
Our Result:
$$\left|\sum_{p\in P} \sigma(p)e^{-\|x-p\|^2}\right| = O(\sqrt{\log^* n \log \log^* n})$$

Size of coreset: $O(\frac{1}{\varepsilon}\sqrt{\log^*\frac{1}{\varepsilon}\log\log^*\frac{1}{\varepsilon}})$ when d is constant

Final Bound

Removing the assumption of P being inside a ℓ_{∞} ball of radius 1:

- partition the input P
- lacktriangle run our algorithm on each ℓ_∞ ball of radius 1
- an extra constant factor depending on d in the final bound



Our Result:
$$\left|\sum_{p\in P} \sigma(p)e^{-\|x-p\|^2}\right| = O(\sqrt{\log^* n \log \log^* n})$$

Size of coreset: $O(\frac{1}{\varepsilon}\sqrt{\log^*\frac{1}{\varepsilon}\log\log^*\frac{1}{\varepsilon}})$ when d is constant

Conclusion

Find a ε -coreset $Q \subset P$ s.t.

$$\max_{x \in \mathbb{R}^d} \left| \overline{\mathcal{G}}_P(x) - \overline{\mathcal{G}}_Q(x) \right| \le \varepsilon$$

Best known result for size of Q:

d	Upper	Lower	
1	1/arepsilon	1/arepsilon	
constant	$\frac{1}{\varepsilon}\sqrt{\log^*\frac{1}{\varepsilon}\log\log^*\frac{1}{\varepsilon}}$		New result
any	$\sqrt{d}/\varepsilon \cdot \sqrt{\log \frac{1}{\varepsilon}}$	$\sqrt{d}/arepsilon$	
$\geq \frac{1}{arepsilon^2}$	$1/\varepsilon^2$	$1/\varepsilon^2$	

Thank you